Can I represent an image in a binary tree format?

7 views (last 30 days)

Answers (2)

Image Analyst
Image Analyst on 19 Mar 2013
See qtdecomp() in the Image Processing Toolbox.
  6 Comments
Image Analyst
Image Analyst on 21 Mar 2013
I've used qtdecomp only briefly once and that was to just understand how it works. I never need to do that. It doesn't return some information that I needed and when I called the Mathworks they weren't too clear on how it worked either. Anyway, I don't use it. Not sure why you think you need to do this or why you chose that project subject. Can you explain why? Better yet, start your own discussion, rather than intertwine your discussion with Allesandro's.

Sign in to comment.


Alessandro
Alessandro on 21 Mar 2013
Edited: Alessandro on 21 Mar 2013
from wikipedia I read the following about image segmentation:
In computer vision, image segmentation is the process of partitioning a digital image into multiple segments (sets of pixels, also known as superpixels). The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to analyze
You need a tree and the "superpixels" values of the tree. I just wannted to understand the sparse objects from matlab so I tryed the qtdecomp function:
%define some grayscale image
I = uint8([1 1 1 1 2 3 6 6;...
1 1 2 1 4 5 6 8;...
1 1 1 1 7 7 7 7;...
1 1 1 1 6 6 5 5;...
20 22 20 22 1 2 3 4;...
20 22 22 20 5 4 7 8;...
20 22 20 20 9 12 40 12;...
20 22 20 20 13 14 15 16]);
%Get where there is information
S = qtdecomp(I,.05);
%Get the information using the simply mean value
erg = sparse(0);
blocks = unique(nonzeros(S));
for blocksize = blocks'
[y x] = find(S==blocksize);
for i=1:length(x)
erg(x(i),y(i)) = mean2(I(y(i):y(i)+blocksize-1,x(i):x(i)+blocksize-1));
end
end
rebuildimage = zeros(size(S));
%Rebuild the image from the mean values in the block
for blocksize = blocks'
[y x] = find(S==blocksize);
for i=1:length(x)
rebuildimage(y(i):y(i)+blocksize-1,x(i):x(i)+blocksize-1) = nonzeros(erg(x(i),y(i)))
end
end
disp(rebuildimage)
So now you can see rebuildimage looks like I. In the matlab sparse arrays S and erg you have the "super pixels" information.
  4 Comments

Sign in to comment.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!