How can I plot this function using Brent's method?
8 views (last 30 days)
Show older comments
Boran Kolcu
on 23 Nov 2020
Commented: John D'Errico
on 24 Nov 2020
in the interval (0:0004; 0:0012).
0 Comments
Accepted Answer
Manoj Kumar Koduru
on 23 Nov 2020
f=@(u) u*(1+0.7166/cos(25*sqrt(u)))-1.6901e-2; %Equation
a=-10;
b=+10;
err=0.001;
%Testing root is bracketed between [a b]
if f(a)*f(b) >=0
opts=struct('WindowsStyle','model','Interpreter','tex');
F=errordlg('The Root is out of the Brackets,increase a and b values'....
,'Roots Are Not Bracketed',opts); %Message Box
end
%Swapping a and b Contents
if abs(f(a)) < abs(f(b))
L=a; a=b; b=L;
end
c=a;
MFlag=1;
%Main Loop
delta =err; i=0;
while abs(b-a) >=err
i=i+1;
if f(a) ~=f(c)&&f(b) ~=f(c)
s=a*f(b)*f(c)/(f(a)-f(b))*(f(a)-f(c))+....
b*f(a)*f(c)/((f(b)*f(a))*(f(b)-f(c)))+...
c*f(a)*f(b)/((f(c)-f(a))*(f(c)-f(b))); %Inverse Quadratic Interpolation
else
s=b-f(b)*(b-a)/(f(b)-f(a)); %Secant method
end
if s<=(3*a+b)/4 || s>=b ||....
(MFlag==1 && abs(s-b) >= abs(b-c)/2) ||....
(MFlag==0 && abs(s-b) >= abs(c-d)/2) ||....
(MFlag==1 && abs(b-c) < abs(delta)) ||....
(MFlag==0 && abs(c-d) >= abs(delta))
s=(a+b)/2; %Bisection Method
MFlag=1;
else
MFlag=0;
end
%Calculate f(s)
d=c; c=b;
if f(a)*f(s) <0
b=s;
else
a=s;
end
%Swapping a and b contents
if abs(f(a)) < abs(f(b))
if abs(f(a)) < abs(f(b))
L=a; a=b; b=L;
end
end
ss(i,1)=s;
dd(i,1)=d;
ii(i,1)=i;
end
plot(1:i,ss,'Linewidth',2);
grid on
title('Brent Method')
xlabel('Number of Itterations')
ylabel('Root Contents')
2 Comments
John D'Errico
on 24 Nov 2020
Please don't do obvious homework problems for students. They learn nothing from you, except to then post every homework question here.
More Answers (0)
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!