Lsqnonlin_Fitting Data

1 view (last 30 days)
Fredic
Fredic on 8 Oct 2020
Commented: Fredic on 11 Oct 2020
Hello Guys!!
I am performing a fitting of different curves using lsqnonlin. My fitting equation is composed of six parameters. When I run my script I obtained one set of parameters for each curve.
It is possible to perform the fitting using only one set of parameters for each curve??
In the attachment my script:
x0 = [10.07 5.89 21.62 0.116 0.493 47.99];
coeff = zeros(6,mm);
LB=[0 0 0 0 0 0];
UB=[inf inf inf 1 0.5 90];
sig_fit_11 = zeros(nn,mm);
sig_fit_22 = zeros(nn,mm);
for i=1:mm
options = optimoptions(@lsqnonlin,'Algorithm','trust-region-reflective');
[x,resnorm,residual,exitflag]=lsqnonlin(@(x)f_const(Lam11(:,i), Lam22(:,i), x) - [sigma11(:,i); sigma22(:,i)],x0,LB,UB,options);
coeff (:,i) = x;
sigma = f_const(Lam11(:,i), Lam22(:,i), x);
sig_fit_11(:,i) = sigma(1:nn);
sig_fit_22(:,i) = sigma((nn+1):end);
end
I look forward to your reply!!!
Thank you very much

Answers (1)

Alex Sha
Alex Sha on 8 Oct 2020
Hi, if possible, please post out your data of each curve, as well as the fitting equation.
  4 Comments
Fredic
Fredic on 9 Oct 2020
function [sigOutput]=f_const(Lam11,Lam22,x)
c=x(1);
k1=x(2);
k2=x(3);
kip=x(4);
kop=x(5);
alpha=x(6);
A=2*kop*kip;
B=2*kop*(1-2*kip);
lam3 = 1./(Lam11.*Lam22);
I1=(Lam11.^2+Lam22.^2+lam3.^2);
I4=Lam11.^2.*cosd(alpha).^2+Lam22.^2.*sind(alpha).^2;
In=lam3.^2;
E4=A.*I1+B.*I4+(1-3*A-B).*In-1;
sig1=(c+4.*(A+B.*cosd(alpha).^2).*k1.*E4.*exp(k2.*E4.^2)).*Lam11.^2-(c+4*(1-2*A-B).*k1.*E4.*exp(k2.*E4.^2)).*lam3.^2;
sig2=(c+4.*(A+B.*sind(alpha).^2).*k1.*E4.*exp(k2.*E4.^2)).*Lam22.^2-(c+4*(1-2*A-B).*k1.*E4.*exp(k2.*E4.^2)).*lam3.^2;
sigOutput=[sig1;sig2];
end
Fredic
Fredic on 11 Oct 2020
do you have an idea?

Sign in to comment.

Categories

Find more on Curve Fitting Toolbox in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!