Generalization needed in dsolve code

3 views (last 30 days)
MINATI
MINATI on 7 Oct 2020
Edited: MINATI PATRA on 24 Oct 2020
Pr = 1;
ODE = @(x,y) [y(2); y(3); -(1/2)*y(3)*y(1); y(5); - (Pr/2)*y(1)*y(5);];
BC = @(ya,yb)[ya(1);ya(2);ya(4)-1;yb(2)-1; yb(4);];
xa = 0; xb = 5; xn = linspace(xa,xb,100); x = xn;
solinit = bvpinit(x,[0 1 0 1 0]); sol = bvp5c(ODE,BC,solinit); S = deval(sol,x);
fV = deval(sol,0); p1 = fV(3); q1 = fV(5);
Pr = sym('Pr');x = sym('x');f0(x) = sym('f0(x)'); g0(x) = sym('g0(x)');
eqn0 = [ diff(f0,3) == 0, diff(g0,2) == 0];
cond0 = [f0(0) == 0, subs(diff(f0),0) == 0, subs(diff(f0),5) == 1, g0(0) == 1, g0(5) == 0];
F0 = dsolve(eqn0,cond0); f0 = F0.f0; g0 = F0.g0; % disp([f0,g0])
f1(x) = sym('f1(x)'); g1(x) = sym('g1(x)');
eqn1 = [ diff(f1,3) + (1/2)*f0*diff(f0,2) == 0, diff(g1,2) + (Pr/2)*f0*diff(g0) == 0];
cond1 = [f1(0) == 0, subs(diff(f1),0) == 0, subs(diff(f1),5) == 0, g1(0) == 0, g1(5) == 0];
F1 = dsolve(eqn1,cond1); f1 = F1.f1; g1 = F1.g1; %disp([f1,g1])
f2(x) = sym('f2(x)'); g2(x) = sym('g2(x)');
eqn2 = [ diff(f2,3) + (1/2)*(f0*diff(f1,2) + f1*diff(f0,2)) == 0, diff(g2,2) + (Pr/2)*(f0*diff(g1) + f1*diff(g0)) == 0];
cond2 = [f2(0) == 0, subs(diff(f2),0) == 0, subs(diff(f2),5) == 0, g2(0) == 0, g2(5) == 0];
F2 = dsolve(eqn2,cond2); f2 = F2.f2; g2 = F2.g2; %disp([f2,g2])
f3(x) = sym('f3(x)'); g3(x) = sym('g3(x)');
eqn2 = [ diff(f3,3) + (1/2)*(f0*diff(f2,2) + f1*diff(f1,2) + f2*diff(f0,2)) == 0, diff(g3,2) + (Pr/2)*(f0*diff(g2) + f1*diff(g1) + f2*diff(g0)) == 0];
cond2 = [f3(0) == 0, subs(diff(f3),0) == 0, subs(diff(f3),5) == 0, g3(0) == 0, g3(5) == 0];
F3 = dsolve(eqn2,cond2); f3 = F3.f3; g3 = F3.g3; %disp([f3,g3])
f = f0 + f1 + f2 + f3; f = collect(f,x);
g = g0 + g1 + g2 + g3; g = collect(g,x); g = subs(g,Pr,1);
figure(2),plot(xn,S(2,:),'LineWidth',1.5); axis([0 5 0 1]),xlabel('\bf\eta'); ylabel('\bff^{\prime}(\eta)');hold on,fplot(diff(f),[0 5],'--','LineWidth',1.5)
figure(4),plot(xn,S(4,:),'LineWidth',1.5); axis([0 5 0 1]),xlabel('\bf\eta'); ylabel('\bf\theta(\eta)');hold on,fplot(g,[0 5],'--','LineWidth',1.5)
%% I need to merge all the dsolve code into a single code to solve the problem given in attached pdf,
%% NUMERICAL code is of Eqns (12) & (14) but dsolve code is of Eqns (17) - (24).
%% Any attempt will be a great work
  9 Comments
Walter Roberson
Walter Roberson on 23 Oct 2020
Here is the technical trick you need:
num_f = 31;
syms x
funs = arrayfun(@(idx) str2sym(sprintf('f%d(x)', idx)), 0:num_f-1);
d1 = arrayfun(@(f)diff(f,x), funs);
d2 = arrayfun(@(f)diff(f,x), d1);
d3 = arrayfun(@(f)diff(f,x), d2);
Now you can proceed with other arrayfun that create your equations in vectorized form, like sum(funs) for f0 + f1 + ... f30
MINATI PATRA
MINATI PATRA on 24 Oct 2020
Edited: MINATI PATRA on 24 Oct 2020
@Dear Walter, how to include B.Cs (It is slightly different for f0 and other steps)
%% Please arrange this to run
Pr = 1;
ODE = @(x,y) [y(2); y(3); -(1/2)*y(3)*y(1); y(5); - (Pr/2)*y(1)*y(5);];
BC = @(ya,yb)[ya(1);ya(2);ya(4)-1;yb(2)-1; yb(4);];
xa = 0; xb = 5; xn = linspace(xa,xb,100); x = xn;
solinit = bvpinit(x,[0 1 0 1 0]); sol = bvp5c(ODE,BC,solinit); S = deval(sol,x);
fV = deval(sol,0); p1 = fV(3); q1 = fV(5);
Pr = sym('Pr');x = sym('x');f0(x) = sym('f0(x)'); g0(x) = sym('g0(x)');
eqn0 = [ diff(f0,3) == 0, diff(g0,2) == 0];
cond0 = [f0(0) == 0, subs(diff(f0),0) == 0, subs(diff(f0),5) == 1, g0(0) == 1, g0(5) == 0];
F0 = dsolve(eqn0,cond0); f0 = F0.f0; g0 = F0.g0; % disp([f0,g0])
num_f = 31; num_g = 31; syms x
funs = arrayfun(@(idx) str2sym(sprintf('f%d(x)', idx)), 0:num_f-1);
df1 = arrayfun(@(f)diff(f,x), funs); df2 = arrayfun(@(f)diff(f,x), df1); df3 = arrayfun(@(f)diff(f,x), df2);
guns = arrayfun(@(idx) str2sym(sprintf('g%d(x)', idx)), 0:num_g-1);
dg1 = arrayfun(@(g)diff(g,x), guns); dg2 = arrayfun(@(g)diff(g,x), dg1); dg3 = arrayfun(@(g)diff(g,x), dg2);
f = sum(funs); g = sum(guns);
figure(1),plot(xn,S(2,:),'LineWidth',1.5); axis([0 5 0 1]),xlabel('\bf\eta'); ylabel('\bff^{\prime}(\eta)');hold on,fplot(diff(f),[0 5],'--','LineWidth',1.5)
figure(2),plot(xn,S(4,:),'LineWidth',1.5); axis([0 5 0 1]),xlabel('\bf\eta'); ylabel('\bf\theta(\eta)');hold on,fplot(g,[0 5],'--','LineWidth',1.5)

Sign in to comment.

Answers (0)

Categories

Find more on Mathematics in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!