Problem with an algorithm
11 views (last 30 days)
Show older comments
Hey guys,
I wanted to build an algorithm which should be able to combine different options till a treshold F.
C = sort([4,1,10,6],2);
[numRows,numCols] = size(C);
F = 7;
O= 1;
So now there should be a new matrix U that should look like this:
U(1) = 1 + 1*4; -- the first one standts for the value one in C
U(2) = 1 + 2*4;
U(3) = 1 + 3*4; -- now the treshold of 2*F is reached and it continues with the new number of C = 6
U(4) = 1+ 1*6;
U(5) = 1+2*6;
when all options with C = 1 are calculated the algorithm should continue with the next value of C. In this case 4
U(n) = 4+ 1*1;
U(n+1) = 4+ 2*1;
And so on.
I came up with this:
for i = 1:numCols
while (O > 1) && (N(t) < 2*F)
for t = 1:numCols
N(t) = C(i) + 1 * C(i);
O = O-1;
end
end
end
Any idea how to solve this? This is driving me crazy
4 Comments
Mathieu NOE
on 7 Oct 2020
ok , it's a bit better now
still I need to understand your logic... so can you please confirm / comment my assumptions
let's put in a more general form : U(n) = C(i) + k*C(j)
- n is the current indice of the main loop (while condition) : goes from 1 to end of validity of while condition
- k may differ from n , depends if threshold is reached or not
- i and j indexes are also independant - a contrario from what your code shows. so the first C term is not the same as the second one.
Question : why in the first iteration it starts with C = 4 in U(1) = 1 + 1*4 and not with the first value of C ( C = 1) , it does not follows the same logic as after, once you reach : when all options with C = 1 are calculated the algorithm should continue with the next value of C. In this case 4
U(n) = 4+ 1*1;
U(n+1) = 4+ 2*1;
In this case the "first" C term is updated (1 => 4) , but the second C term restarts at 1 .
so I don't understand the difference in the logic... but you have probably good resons for it ?
Accepted Answer
Mathieu NOE
on 7 Oct 2020
hi again
i think I have something for you. I ended up doing it completly different : compute all combinations but keep only the ones that fullfill the threshold criteria. Was much simpler than doing aerobatics with multiple conditions statements.
This is the output of my code : (code is in attachement)
N( 1) = 1+1 * 4
N( 2) = 1+2 * 4
N( 3) = 1+3 * 4
N( 4) = 1+1 * 6
N( 5) = 1+2 * 6
N( 6) = 1+1 * 10
N( 7) = 4+1 * 1
N( 8) = 4+2 * 1
N( 9) = 4+3 * 1
N( 10) = 4+4 * 1
N( 11) = 4+5 * 1
N( 12) = 4+6 * 1
N( 13) = 4+7 * 1
N( 14) = 4+8 * 1
N( 15) = 4+9 * 1
N( 16) = 4+1 * 4
N( 17) = 4+2 * 4
N( 18) = 4+1 * 6
N( 19) = 6+1 * 1
N( 20) = 6+2 * 1
N( 21) = 6+3 * 1
N( 22) = 6+4 * 1
N( 23) = 6+5 * 1
N( 24) = 6+6 * 1
N( 25) = 6+7 * 1
N( 26) = 6+1 * 4
N( 27) = 6+1 * 6
N( 28) = 10+1 * 1
N( 29) = 10+2 * 1
N( 30) = 10+3 * 1
3 Comments
More Answers (0)
See Also
Categories
Find more on Matrix Indexing in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!