Partially labelled semantic segmentation

2 views (last 30 days)
Hi, I'm trying to use partially labelled images as a groud truth for the semantic segmentation training(there are lots of ambiguous regions in my images, so i am hoping to train only with the apparent regions; by inputting the class weight 0(techinically it was 10^-20 as I cannot input zero) to the unlabeled class in pixel classification layer)
And I found that the mini-batch accuracy is fluctuates around 35-40% and never converges.
Are there any ways i could fix this problem?
Is it related to excessive non-labeled regions?
I would appreciate any of your advice concerning this problem.

Accepted Answer

Raunak Gupta
Raunak Gupta on 3 Oct 2020
Hi,
Assigning zero class weight to unlabeled pixel will help in removing them from loss calculation during training however when the accuracy metrics are calculated after training, it will include all the pixels and thus giving random categories to unlabeled pixel (I am assuming there is more than 1 class in labeled pixels).
Instead I will recommend assigning a background category to unlabeled pixel and keeping the class weight same as labeled pixel so that network can assign proper categories to all the pixels (background pixel can also be trained). This way network will be more robust for all parts of the image. So, adding one more class named background to the previous classes may help you converge to a higher accuracy.
  7 Comments
byungchan
byungchan on 10 Oct 2020
After I've installed 2020b the accuracy problem has been resolved!
Thanks again!

Sign in to comment.

More Answers (0)

Categories

Find more on Image Data Workflows in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!