a 6x6 matrix with unkown x

2 views (last 30 days)
jad bousaid
jad bousaid on 22 Sep 2020
Commented: jad bousaid on 23 Sep 2020
i'm a civil engineering student and i'm having a problem solving a 6x6 matrix with an unkown x
the equation says ([K]-x[M])Φ=0
[M]= [(841*x)/10, 0, 0, 0, 0, 0]
[ 0, (841*x)/10, 0, 0, 0, 0]
[ 0, 0, (841*x)/10, 0, 0, 0]
[ 0, 0, 0, (841*x)/10, 0, 0]
[ 0, 0, 0, 0, (841*x)/10, 0]
[ 0, 0, 0, 0, 0, (841*x)/10]
[K]= 673000 -455000 77600 -654000 455000 12600
-455000 1810000 18000 445000 -321000 18000
77600 18000 429000 -12600 -18000 56875
-654000 455000 -12600 1070000 -455000 507000
455000 -321000 -18000 -455000 4480000 -18000
12600 18000 56875 507000 -18000 997750
first of all i need to calculate det(K-M) to find the 6 values of x, then replace it in M to calculate the vectors Φ
if someone can help me or tell me the method, it is very urgent and it is for my senior project.
thank you guys.

Answers (1)

Matt J
Matt J on 22 Sep 2020
See eig().
  1 Comment
jad bousaid
jad bousaid on 23 Sep 2020
root(z1^6 + z1^5*((2523*x)/5 - 13320750) + z1^4*(- 5601375375*x + (2121843*x^2)/20 + 64922447204375) + z1^3*(21839911239551750*x - 942151338075*x^2 + (594823321*x^3)/50 - 142154701436104375000) + z1^2*(- 35865631172329133812500*x + (5510209605738906525*x^2)/2 - (158469855064215*x^3)/2 + (1500739238883*x^4)/2000 + 140014161262115304725000000) + z1*(23550381924287794254745000000*x - 3016299581592880153631250*x^2 + (308939085228428025835*x^3)/2 - (26654629621800963*x^4)/8 + (1262121699900603*x^5)/50000 - 52141801798740670429625000000000) + (353814783205469041*x^6)/1000000 + 990293559916301748412027250000*x^2 - (22416543511934609883*x^5)/400 - 4385125531274090383131462500000000*x - 84556931603987073640129375*x^3 + (51963554135421593945447*x^4)/16 + 2945824239263437512080650000000000000, z1, 1)
root(z1^6 + z1^5*((2523*x)/5 - 13320750) + z1^4*(- 5601375375*x + (2121843*x^2)/20 + 64922447204375) + z1^3*(21839911239551750*x - 942151338075*x^2 + (594823321*x^3)/50 - 142154701436104375000) + z1^2*(- 35865631172329133812500*x + (5510209605738906525*x^2)/2 - (158469855064215*x^3)/2 + (1500739238883*x^4)/2000 + 140014161262115304725000000) + z1*(23550381924287794254745000000*x - 3016299581592880153631250*x^2 + (308939085228428025835*x^3)/2 - (26654629621800963*x^4)/8 + (1262121699900603*x^5)/50000 - 52141801798740670429625000000000) + (353814783205469041*x^6)/1000000 + 990293559916301748412027250000*x^2 - (22416543511934609883*x^5)/400 - 4385125531274090383131462500000000*x - 84556931603987073640129375*x^3 + (51963554135421593945447*x^4)/16 + 2945824239263437512080650000000000000, z1, 2)
root(z1^6 + z1^5*((2523*x)/5 - 13320750) + z1^4*(- 5601375375*x + (2121843*x^2)/20 + 64922447204375) + z1^3*(21839911239551750*x - 942151338075*x^2 + (594823321*x^3)/50 - 142154701436104375000) + z1^2*(- 35865631172329133812500*x + (5510209605738906525*x^2)/2 - (158469855064215*x^3)/2 + (1500739238883*x^4)/2000 + 140014161262115304725000000) + z1*(23550381924287794254745000000*x - 3016299581592880153631250*x^2 + (308939085228428025835*x^3)/2 - (26654629621800963*x^4)/8 + (1262121699900603*x^5)/50000 - 52141801798740670429625000000000) + (353814783205469041*x^6)/1000000 + 990293559916301748412027250000*x^2 - (22416543511934609883*x^5)/400 - 4385125531274090383131462500000000*x - 84556931603987073640129375*x^3 + (51963554135421593945447*x^4)/16 + 2945824239263437512080650000000000000, z1, 3)
root(z1^6 + z1^5*((2523*x)/5 - 13320750) + z1^4*(- 5601375375*x + (2121843*x^2)/20 + 64922447204375) + z1^3*(21839911239551750*x - 942151338075*x^2 + (594823321*x^3)/50 - 142154701436104375000) + z1^2*(- 35865631172329133812500*x + (5510209605738906525*x^2)/2 - (158469855064215*x^3)/2 + (1500739238883*x^4)/2000 + 140014161262115304725000000) + z1*(23550381924287794254745000000*x - 3016299581592880153631250*x^2 + (308939085228428025835*x^3)/2 - (26654629621800963*x^4)/8 + (1262121699900603*x^5)/50000 - 52141801798740670429625000000000) + (353814783205469041*x^6)/1000000 + 990293559916301748412027250000*x^2 - (22416543511934609883*x^5)/400 - 4385125531274090383131462500000000*x - 84556931603987073640129375*x^3 + (51963554135421593945447*x^4)/16 + 2945824239263437512080650000000000000, z1, 4)
root(z1^6 + z1^5*((2523*x)/5 - 13320750) + z1^4*(- 5601375375*x + (2121843*x^2)/20 + 64922447204375) + z1^3*(21839911239551750*x - 942151338075*x^2 + (594823321*x^3)/50 - 142154701436104375000) + z1^2*(- 35865631172329133812500*x + (5510209605738906525*x^2)/2 - (158469855064215*x^3)/2 + (1500739238883*x^4)/2000 + 140014161262115304725000000) + z1*(23550381924287794254745000000*x - 3016299581592880153631250*x^2 + (308939085228428025835*x^3)/2 - (26654629621800963*x^4)/8 + (1262121699900603*x^5)/50000 - 52141801798740670429625000000000) + (353814783205469041*x^6)/1000000 + 990293559916301748412027250000*x^2 - (22416543511934609883*x^5)/400 - 4385125531274090383131462500000000*x - 84556931603987073640129375*x^3 + (51963554135421593945447*x^4)/16 + 2945824239263437512080650000000000000, z1, 5)
root(z1^6 + z1^5*((2523*x)/5 - 13320750) + z1^4*(- 5601375375*x + (2121843*x^2)/20 + 64922447204375) + z1^3*(21839911239551750*x - 942151338075*x^2 + (594823321*x^3)/50 - 142154701436104375000) + z1^2*(- 35865631172329133812500*x + (5510209605738906525*x^2)/2 - (158469855064215*x^3)/2 + (1500739238883*x^4)/2000 + 140014161262115304725000000) + z1*(23550381924287794254745000000*x - 3016299581592880153631250*x^2 + (308939085228428025835*x^3)/2 - (26654629621800963*x^4)/8 + (1262121699900603*x^5)/50000 - 52141801798740670429625000000000) + (353814783205469041*x^6)/1000000 + 990293559916301748412027250000*x^2 - (22416543511934609883*x^5)/400 - 4385125531274090383131462500000000*x - 84556931603987073640129375*x^3 + (51963554135421593945447*x^4)/16 + 2945824239263437512080650000000000000, z1, 6)
i can't find the roots, all i can get is that.

Sign in to comment.

Categories

Find more on Genomics and Next Generation Sequencing in Help Center and File Exchange

Products


Release

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!