MATLAB Answers

Explanation Alexnet in deep learning ?

28 views (last 30 days)
shivan artosh
shivan artosh on 6 Sep 2020
Commented: shivan artosh on 2 Oct 2020 at 23:57
i need someone to explain me the following question:
this is a part of my code, my question is:
1. coluld you please write some explanation comment only for the following part of code only for (emoveLayers ,inputLayer, replaceLayer , addLayers and connectLayers.
2. i think this code is the same work when we modify AlexNet in (deepNetworkDesigner) am i right or not? or is there any different between 2 ways (manually/deepNetworkDesigner and coding) as below code?
lgraph = layerGraph(net.Layers);
lgraph = removeLayers(lgraph, 'fc8'); %please comment here for explanation ???
lgraph = removeLayers(lgraph, 'prob');
lgraph = removeLayers(lgraph, 'output');
% create and add layers
inputLayer = imageInputLayer([imageSize 1], 'Name', net.Layers(1).Name,... %please comment here
'DataAugmentation', net.Layers(1).DataAugmentation, ...
'Normalization', net.Layers(1).Normalization);
lgraph = replaceLayer(lgraph,net.Layers(1).Name,inputLayer);
newConv1_Weights = net.Layers(2).Weights;
newConv1_Weights = mean(newConv1_Weights(:,:,1:3,:), 3); % taking the mean of kernal channels
newConv1 = convolution2dLayer(net.Layers(2).FilterSize(1), net.Layers(2).NumFilters,...
'Name', net.Layers(2).Name,...
'NumChannels', inputLayer.InputSize(3),...
'Stride', net.Layers(2).Stride,...
'DilationFactor', net.Layers(2).DilationFactor,...
'Padding', net.Layers(2).PaddingSize,...
'Weights', newConv1_Weights,...BiasLearnRateFactor
'Bias', net.Layers(2).Bias,...
'BiasLearnRateFactor', net.Layers(2).BiasLearnRateFactor);
lgraph = replaceLayer(lgraph,net.Layers(2).Name,newConv1); %please comment here for explanation ?
lgraph = addLayers(lgraph, fullyConnectedLayer(numClasses,'Name', 'fc2'));
lgraph = addLayers(lgraph, softmaxLayer('Name', 'softmax'));%please comment here for explanation ?
lgraph = addLayers(lgraph, classificationLayer('Name','output'));
lgraph = connectLayers(lgraph, 'drop7', 'fc2');%please comment here for explanation ???
lgraph = connectLayers(lgraph, 'fc2', 'softmax');
lgraph = connectLayers(lgraph, 'softmax', 'output');
% -------------------------------------------------------------------------

  0 Comments

Sign in to comment.

Accepted Answer

Mohammad Sami
Mohammad Sami on 7 Sep 2020
This code is for transfer learning. That is when you already have a pretrained model that you wish to use for another purpose. The process is explained in detail in MATLAB's documentation.
Using Deep Network Designer:
Usign Manual Method:
Since the network was trained with different classes then your current purpose, you have to remove the final few layers at least from the last fully connected layer onwards. This is because the final fully connected layer needs to have the same output size as the number of classess in your data.
You then have to have to create new layers for the layers that you removed. The new fully connected layer has the output size which matches the number of classes in your data. Finally you can add these newly connected layers to complete your network.

  3 Comments

shivan artosh
shivan artosh on 7 Sep 2020
Thanks for replying,
this all mean the Deep Network Designer methods is the same as in a coding methods, is not it or what?
Mohammad Sami
Mohammad Sami on 2 Oct 2020 at 23:44
Deep network designer is a convenient app to help you design / edit a network. Once you have edited to your satisfaction you can export it as code. You can always do the same directly in code.
shivan artosh
shivan artosh on 2 Oct 2020 at 23:57
as i said i have this code and i need to exchange AlexNet with (vgg16, vgg19, ResNet18 and densnet) one by one.
could you please tell me which part of this code should be changed?
i posted my question here:
thank you so much

Sign in to comment.

More Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!