1D transport model using finite difference approach
5 views (last 30 days)
Show older comments
How can I develop the model of advection-dispersion equation using initial and boundary condition? Can anyone help me, please?
%dc/dt=Dh/Rf*(d^2c/dx^2)-v/Rf(dc/dx)
clear
clc
%Input model physical parameter for simulation
L=100; % length of modeled domain
t=50; %time
Do=0.027; % molecular diffusion coefficient,m^2/yr
Dm=0.075; %mechanical dispersion coefficient,m^2/yr
Dn=0.02; %effective molecular diffusion coefficient, m^2/yr
alpha=0.15; %Dispersivity, M
v=0.5; %Advective velocity,m/yr
Dz=0.095; % Hydrodynamic Dispersion
n=0.4; % porosity
Rf=1; %Retardation factor
Hf=10; % equivalent height of leachate, M
delta_t=1; %time variation,s
delta_z=1.5; % depth, M
%governing Equation
%(dc/dt)=(Dz/Rf)*(d^2c/dx^2)-(v/Rf)*(dc/dx);
A=(Dz*delta_t)/(Rf*(delta_z)^2);
B=(v*delta_t)/(2*Rf*delta_z);
%finite difference form of governing equation
C(m+1,i)=(1-2*A-2*B)*C(m,i)+A*C(m,i+1)+(A+2*B)*C(m,i-1);
%initial condition
t=0;
z=0;
C(z,0)=0;
C(m,i)=0;
time = 0;
for n=1:nt % Timestep loop
%boundary condition
C(m,i)=0;
Ct(0,t1)=Co-(n/Hf*v)[Ct(0,0)*delta_t+Ct(0,1)*delta_t+Ct(0,2)*delta_t+Ct(0,t-1)*delta_t];
Ct(0,t)=(Co-(n/Hf*v)*(Ct(0,t1)))/[1+(n/Hf*v*delta_t)];
0 Comments
Answers (0)
See Also
Categories
Find more on Particle & Nuclear Physics in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!