Info

This question is closed. Reopen it to edit or answer.

How to solve a set of non-linear simultaneous equations using Matlab ?

1 view (last 30 days)
Respected all,
I am looking for the code which is required to get the solution of a set of 7 non-linear simultaneous equations
Please help
Regards
Surabhi
I need to solve these:
a=1.1:0.1:2.3;
b=(2.*a)./(1+1.5.*((a).^2));
z=((1+2.*b).^2)-4.*b;
d=((1+2.*b)+((z).^(1/2)))./(2.*b);
c=((1+2.*b)-((z).^(1/2)))./(2.*b);
e=(((a+b)./b)-(((1.*(((d).^5)-(c).^5))-((d).^4-(c).^4))./b.*((((d).^6)-(c).^6))-(((d).^5-c.^5)))).^(-1);
q=0:1:12;
k=(((0.85).^((((0.85.*exp(-4)).^(1/2)).*4-(0.85.*exp(-4)).^(1/2))+2.*q))./((2+((0.85.*exp(-4)).^(1/2)).*4-(0.85.*exp(-4)).^(1/2))).*(0.85-1))./((0.85.^((((2.*(2+((0.85.*exp(-4)).^(1/2)).*4-(0.85.*exp(-4)).^(1/2))+(((0.85.*exp(-4)).^(1/2)).*4-(0.85.*exp(-4)).^(1/2)+q)./(2+((0.85.*exp(-4)).^(1/2)).*4-(0.85.*exp(-4)).^(1/2)))))-1)));
f=((b.*(1-e).*(1-e).*a.*(1-k)))./(1-k).*0.50;
t=f.*(1-k);
plot(q,t,'- r <');
  7 Comments
Walter Roberson
Walter Roberson on 24 May 2020
A = linspace(1.1, 2.3, 25);
Q = linspace(0, 12, 30);
[a, q] = ndgrid(A, Q);
b=(2.*a)./(1+1.5.*((a).^2));
z=((1+2.*b).^2)-4.*b;
d=((1+2.*b)+((z).^(1/2)))./(2.*b);
c=((1+2.*b)-((z).^(1/2)))./(2.*b);
e=(((a+b)./b)-(((1.*(((d).^5)-(c).^5))-((d).^4-(c).^4))./b.*((((d).^6)-(c).^6))-(((d).^5-c.^5)))).^(-1);
k=(((0.85).^((((0.85.*exp(-4)).^(1/2)).*4-(0.85.*exp(-4)).^(1/2))+2.*q))./((2+((0.85.*exp(-4)).^(1/2)).*4-(0.85.*exp(-4)).^(1/2))).*(0.85-1))./((0.85.^((((2.*(2+((0.85.*exp(-4)).^(1/2)).*4-(0.85.*exp(-4)).^(1/2))+(((0.85.*exp(-4)).^(1/2)).*4-(0.85.*exp(-4)).^(1/2)+q)./(2+((0.85.*exp(-4)).^(1/2)).*4-(0.85.*exp(-4)).^(1/2)))))-1)));
f=((b.*(1-e).*(1-e).*a.*(1-k)))./(1-k).*0.50;
t=f.*(1-k);
surf(q, a, t, 'edgecolor', 'none');
xlabel('q');
ylabel('a');
zlabel('t')

Answers (0)

This question is closed.

Products


Release

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!