Find a fixed accuracy using confusion matrix.

1 view (last 30 days)
I used a confusion matrix to find accuracy. I am getting different accuracy in each run. How can get a fixed accuracy? Anybody, please help me.
clc;
clear;
clc;
clear;
data=readtable('data2.xlsx', 'ReadVariableNames', false);
data.Var1 = findgroups(data.Var1); % convert column
data.Var9 = findgroups(data.Var9); % convert column
minpts=3;
epsilon=30;
data = table2array(data);
[idx, corepts] = dbscan(data,epsilon,minpts);
fig1 = figure();
gscatter(data(:,1),data(:,2),idx);
fig2 = figure();
ax = axes();
hold on;
core=data(corepts, :);
core_idx = idx(corepts, :);
gscatter(core(:,1),core(:,2),core_idx);
centers = splitapply(@(x) mean(x, 1), core, core_idx);
gscatter(centers(:,1), centers(:,2), 1:size(centers,1));
dist2 = (data(:,1) - centers(:,1).').^2 + (data(:,2) - centers(:,2).').^2;
[~,id] = mink(dist2,336,1);
clusters = data(id);
maximum_num_clusters = 7;
Z = linkage(clusters, 'average');
id= cluster(Z, 'Maxclust', maximum_num_clusters);
k = 3;
[idx1,V,D] = spectralcluster(Z,k);
I=data(1:335,9);
[m,order] = confusionmat(I,idx1);
figure
cm = confusionchart(m,order);
c = 3;
TP = cm.NormalizedValues(c,c) ; % true class is c and predicted as c
FP = sum(cm.NormalizedValues(:,c))-TP ; % predicted as c, true class is not c
FN = sum(cm.NormalizedValues(c,:))-TP ; % true class is c, not predicted as c
TN = sum(diag(cm.NormalizedValues))-TP; % true class is not c, not predicted as c
A=(TP+TN)/(TP+TN+FP+FN)*100

Answers (1)

Aditya Patil
Aditya Patil on 19 Aug 2020
You can set the random seed to get predictable results, as follows
rng(1234);

Categories

Find more on Statistics and Machine Learning Toolbox in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!