training semantic segmentation for grayscale
5 views (last 30 days)
Show older comments
Hi, I'm trying to modify the semantic segmetation example by Matlab to make it work with grayscale image
I think it might involve modifying the nutral network to make it work with the grayscale image for training the model.
please suggest how :)
0 Comments
Answers (2)
Srivardhan Gadila
on 18 Feb 2020
From the layerGraph, replace the imageInputLayer with new imageInputLayer having value 1 in channel dimension. Make use of the function analyzeNetwork to check for any errors and replace the layers accordingly. Then convert all images of the dataset from RGB to Grayscale.
For the network used in the Example: Semantic Segmentation Using Deep Learning, make the following changes:
imageSize = [720 960 3];
lgraph = deeplabv3plusLayers(imageSize, numClasses, "resnet18");
layers = lgraph.Layers
analyzeNetwork(lgraph)
%% Replace layers and create new layerGraph
newlgraph = replaceLayer(lgraph,'data',imageInputLayer([720 960 1],'Name','input'));
newlgraph = replaceLayer(newlgraph,'conv1',convolution2dLayer(7,64,'stride',[2 2],'padding',[3 3 3 3],'Name','conv1'))
analyzeNetwork(newlgraph)
Use the newlgraph for training on grayscale images.
0 Comments
KH TOHIDUL ISLAM
on 29 Jun 2021
You can use the following function!
pximdsResz = pixelLabelImageDatastore(imds,pxds,'OutputSize',imageSize,...
'ColorPreprocessing','gray2rgb');
0 Comments
See Also
Categories
Find more on Image Data Workflows in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!