How to save a neural network to test on a new dataset?
2 views (last 30 days)
Show older comments
Hi,
I am using the following code to train and test NN for 2-class classification. I need to save the trained network to test on a diffreent data set. I tried the save net command, but it just saved the results and not the trained model.
Can nayone please help to get that.?
load iris.mat; % Matlab also provides this dataset (load fisheriris.mat)
% Call features & labels
feat=f; label=l;
% Programmer: Jingwei Too
function NN=jNN(feat,label,kfold,Hiddens,Maxepochs)
% Layer
if length(Hiddens)==1
h1=Hiddens(1); net=patternnet(h1);
elseif length(Hiddens)==2
h1=Hiddens(1); h2=Hiddens(2); net=patternnet([h1 h2]);
elseif length(Hiddens)==3
h1=Hiddens(1); h2=Hiddens(2); h3=Hiddens(3);
net=patternnet([h1 h2 h3]);
end
% rng('default');
% Divide data into k-folds
fold=cvpartition(label,'kfold',kfold,'stratify',true);
% Pre
pred2=[]; ytest2=[]; Afold=zeros(kfold,1);
% Neural network start
for i=1:kfold
% Call index of training & testing sets
trainIdx=fold.training(i); testIdx=fold.test(i);
% Call training & testing features and labels
xtrain=feat(trainIdx,:); ytrain=label(trainIdx);
xtest=feat(testIdx,:); ytest=label(testIdx);
% Set Maximum epochs
net.trainParam.epochs= Maxepochs;
% to prevent early stopping
net.trainParam.max_fail = 500;
net.trainParam.min_grad = 0.000000000000001;
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ...
'plotconfusion', 'plotroc'};
% Training model
net=train(net,xtrain',dummyvar(ytrain)');
% Perform testing
pred=net(xtest');
% Confusion matrix
[~,con]=confusion(dummyvar(ytest)',pred);
% Get accuracy for each fold
Afold(i)=100*sum(diag(con))/sum(con(:));
% Store temporary result for each fold
pred2=[pred2(1:end,:),pred]; ytest2=[ytest2(1:end);ytest];
end
% Overall confusion matrix
save net
[~,confmat]=confusion(dummyvar(ytest2)',pred2); confmat=transpose(confmat);
% Average accuracy over k-folds
acc=mean(Afold);
% Store results
NN.fold=Afold; NN.acc=acc; NN.con=confmat;
fprintf('\n Classification Accuracy (NN): %g %%',acc);
% figure, plotperform(tr)
%figure, plottrainstate(tr)
% figure, ploterrhist(e)
% figure, plotconfusion(ytest2,pred)
% figure, plotroc(Labels,y)
end
0 Comments
Accepted Answer
Dheeraj Singh
on 20 Dec 2019
So, instead of saving the model inside the function, you can return the model
function [net,NN]=jNN(feat,label,kfold,Hiddens,Maxepochs)
and then use the save command
save net
Also, if you trying to use the iris dataset in MATLAB use iris.dat
load iris.dat
feat=iris(:,1:4); label=iris(:,5);
I used the following code and it is working for me:
feat=iris(:,1:4); label=iris(:,5);
% Programmer: Jingwei Too
[net,NN]=jNN(feat,label,5,[10 10 10],10000)
save net
2 Comments
Dheeraj Singh
on 23 Dec 2019
This approach looks fine.
But to get bettwe results you may try using Feature Extraction by Means of Spatial Filtering (Common Spatial Patterns) as done in the following blog:
You can also refer to These File Exchange Links for EEG Data Analysis:
More Answers (0)
See Also
Categories
Find more on Biomedical Signal Processing in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!