How do I solve an equation with a vector term?

2 views (last 30 days)
Efaz Ejaz
Efaz Ejaz on 11 Nov 2019
Commented: Efaz Ejaz on 12 Nov 2019
How do I solve an equation that has one vector term with the rest being constant values? If you look at the part after "syms t", I am attempting to solve for "t" but there are 1001 values for m_0 in eqn1 and a 1001 values for every value of b, h(b) and v(b). So, I'm hoping to get a vector T1 containing 1001 values of t for 1001 values of m_0 and the same for T2 for every value of b, h(b) and v(b).
clear, clc
%Write the given values, u, m_e, b, q, and g.
u = 8000; m_e = 1500; g = 32.2;q = 15; t_0 = 0; b = 0:0.1:100;
%Compute m_0, h_b, and v_b.
m_0 = m_e + q.*b;
h_b = ((u.*m_e)./q)*log(m_e./(m_e+q.*b))+u.*b - 0.5.*g.*b.^2;
v_b = u*log(m_0/m_e) - g.*b;
%Part I'm not so sure about.
syms t
eqn1 = 50000 == u./q.*(m_0-q.*t).*log(m_0-q.*t)+u.*(log(m_0)+1).*t-0.5.*g.*t.^2-((m_0.*u)./q).*log(m_0);
T1 = solve(eqn1, t);
eqn2 = 50000 == h_b+v_b.*(t-b)-0.5.*32.2.*(t-b).^2;
T2 = solve(eqn2, t);
T2_desired = double(T2(2));
T = T2_desired - T1
The output I get is as follows:
Warning: Unable to find explicit solution. For options, see help.
> In solve (line 317)
In ROCKETMAN (line 15)
Index exceeds the number of array elements (0).
Error in sym/subsref (line 900)
R_tilde = builtin('subsref',L_tilde,Idx);

Answers (2)

Basil C.
Basil C. on 11 Nov 2019
The line
eqn1 = 50000 == u./q.*(m_0-q.*t).*log(m_0-q.*t)+u.*(log(m_0)+1).*t-0.5.*g.*t.^2-((m_0.*u)./q).*log(m_0);
will define 1001*1001 equations, you can try indexing instead.
syms t
for i=1:numel(b)
eqn1 = -50000 + u/q*(m_0(i)-q*t)*log(m_0(i)-q*t)+u*(log(m_0(i))+1)*t-0.5*g*t^2-((m_0(i)*u)/q)*log(m_0(i));
T1(i)= solve(eqn1, t);
end
The solution for each will be stored in T, you can do the same for eqn2. Hope this is what you are looking for.
  6 Comments
Efaz Ejaz
Efaz Ejaz on 11 Nov 2019
Edited: Efaz Ejaz on 11 Nov 2019
Sorry for the pain but I just wanted to add that I want to be able to find the difference between the values in T2 and the corresponding values in T1.
So, say when b is 100, I'll get one solution for t in eqn1 (let's call it t1). When b is 100, there'll be a particular value for h_b and v_b and I should get two solutions for t in eqn2(t21 and t22). I want to discard the first solution for t in eqn2 (t21), and do (t22-t1) and put all those differences into another array.
I was hoping to do this for all the values of b.

Sign in to comment.


Walter Roberson
Walter Roberson on 11 Nov 2019
%Write the given values, u, m_e, b, q, and g.
u = 8000; m_e = 1500; g = 32.2;q = 15; t_0 = 0; b = 0:0.1:100;
%Compute m_0, h_b, and v_b.
m_0 = m_e + q.*b;
h_b = ((u.*m_e)./q)*log(m_e./(m_e+q.*b))+u.*b - 0.5.*g.*b.^2;
v_b = u*log(m_0/m_e) - g.*b;
%Part I'm not so sure about.
syms t
nb = numel(b);
T1 = zeros(1,nb);
t0 = 1;
for i=1:nb
eqn1 = -50000 + u/q*(m_0(i)-q*t)*log(m_0(i)-q*t)+u*(log(m_0(i))+1)*t-0.5*g*t^2-((m_0(i)*u)/q)*log(m_0(i));
T1(i)= vpasolve(eqn1, t, t0);
t0 = T1(i);
end
%%
T2 = zeros(2,nb);
T0 = 1;
for i = 1:nb
eqn2 = -50000 + h_b(i)+v_b(i)*(t-b(i))-0.5*32.2*(t-b(i))^2;
k = vpasolve(eqn2, t, t0);
T2(1,i) = k(1);
T2(2,i) = k(2);
t0 = T2(1,i);
end
The above is not all that fast.
Note: b = 37.3 is the first b value for which the T2() are real-valued. With smaller b, both T2 are complex valued.
  3 Comments
Efaz Ejaz
Efaz Ejaz on 12 Nov 2019
Thanks a lot, mate. I really do appreciate the help.

Sign in to comment.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!