finite difference method code

20 views (last 30 days)
% set domains limits and boundary conditions
xo = pi/2; xf = pi; yxo = 1; yxf = 1; N = 10;
% compute interval size and discrete x vector
dx = (xf-xo)/N; dx2 = dx*dx; x = (xo+dx):dx:xf;
% analytica solution (exact)
xe = linspace(xo,xf,N);
ye = (pi./(2*xe)).*(sin(xe) - 2*cos(xe));
% arranging the matrix a
%node 1
a(1,1)=dx2-2; a(1,2)=1+(dx/(xo+dx)); b(1)= ((yxo*dx) /(xo*dx))-yxo;
for i = 2:N-1
a(i,i-1) = (1-(dx/x(i)));
a(i,i) = dx2-2;
a(i,i+1) = (1+(dx/x(i)));
a(N,N-1)=(2*xf+2*dx)/xf; a(N,N-2)=-1; b(N)=yxf*dx2+yxf+((2*yxf*dx)/xf);
i keep getting the following error code
Error using \
Matrix dimensions must agree.
Error in finite_1 (line 26)

Accepted Answer

Walter Roberson
Walter Roberson on 4 Nov 2019
  • If A is a rectangular m-by-n matrix with m ~= n, and B is a matrix with m rows, then A\B returns a least-squares solution to the system of equations A*x= B.
Your A is 10 x 10, and your b is 1 x 10, which has 1 row, rather than the 10 rows needed to match the 10 rows of a
It would be legal to use a\b' but you will need to decide whether that is meaningful for your situation.

More Answers (0)


Find more on Statistics and Machine Learning Toolbox in Help Center and File Exchange


Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!