Particle swarm optimization implementation error

1 view (last 30 days)
@all please I need your suggestion and help on this code using pso
for num_acur= 1:1:num_aopt
options=optimset('MaxIter',400);
a_init=1*rand(4,1);
[a_opt, Fval, exitFlag]=fminunc(@W,a_init,options);
a_result(num_acur,:)=[a_opt',Fval,a_init',exitFlag];
end
Rewriting this Using Pso
for num_acur = 1:1:num_aopt
fun = @W;
lb = [-30,-30,-30,-30];
ub =[100,10,10,10];
% options = optimoptions('particleswarm','SwarmSize',100);
%options = optimoptions('particleswarm','SwarmSize',50,'HybridFcn',@fmincon);
nvars = 4;
[a_opt, Fval, exitFlag] = particleswarm(fun,nvars,lb,ub);%,options);
a_result(num_acur,:)=[a_opt',Fval,lb',exitFlag];
end
Error
Error using horzcat
Dimensions of arrays being concatenated are not consistent.
Error in code ()
a_result(num_acur,:)=[a_opt',Fval,lb',exitFlag];

Answers (1)

Walter Roberson
Walter Roberson on 1 Nov 2019
[a_opt, Fval, exitFlag] = particleswarm(fun,nvars,lb,ub);%,options);
a_result(num_acur,:)=[a_opt',Fval,lb',exitFlag];
The first output from particleswarm is a row vector with length equal to the number of variables -- so 1 x 4 in your case. The second output is the scalar function result.
You use conjugate transpose on the 1 x 4, which will give you a 4 x 1. You use it with [] with the scalar Fval, so you are trying to horizontally concatenate a vector with 4 rows and a vector with 1 row. That is not a permitted operation.
You need to either not transpose a_opt and lb, or else you need to use ; instead of , in the [] so that you construct a column.
  8 Comments
Odesanmi Gbenga Abiodun
Odesanmi Gbenga Abiodun on 9 Nov 2019
No, their is another function for the nested x
Tota_number =find(a_result(:,5)==min(a_result(:,5)));
a_prama_tra=a_result(Tota_number,1:4);
a_prama = a_prama_tra
%[opt_x_current, fun_negEI, exitFlag]=fmincon(@nested,opt_x_init,[-1,1.6;1,-1.6],[-0.2;1],[],[],[G_low,E_low],[G_high,E_high],[]);
[opt_x_current, fun_negE, exitFlag]=particleswarm(@nested,2,lb,ub);
opt_x_nested=opt_x_current;
Bys_flag=0;
x=[x,opt_x_nested];
function Kern_Cov_xixj=Aug(xi,xj)
global a_prama
Kern_Cov_xixj=(a_prama(1)).^2*exp(-(1/2)*((xi-xj)'*inv(diag([(a_prama(2)).^2,( a_prama(3)).^2]))*(xi-xj)))+a_prama(4).^2*uita(xi,xj);
end
function E_ne_o=nested(X_opt)
global x y E_m E_v
y_n=size(y,1);
K=ones(y_n,y_n);
for i=1:1:y_n
for j=1:1:y_n
K(i,j)=Aug(x(:,i),x(:,j));
end
end
k=ones(y_n,1);
for i=1:1:y_n
k(i,1)=Aug(X_opt,x(:,i));
end
E_m=k'*inv(K)*y;
E_v=Aug(X_opt,X_opt)-k'*inv(K)*k;
if(E_v>0)
f_best=min(y);
u_star=(f_best-E_m)/sqrt(E_v);
E_o=(f_best-E_m).*normcdf(u_star)+sqrt(E_v).*normpdf(u_star);
else
E_o=0;
end
E_ne_o=-E_o;
end
Walter Roberson
Walter Roberson on 9 Nov 2019
There would need to be a function header at the top and an end at the bottom of that in order for that to make use of nested functions and shared variables.

Sign in to comment.

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!