Natural boundary condition for 1D heat equation
    5 views (last 30 days)
  
       Show older comments
    
Hi, 
I am trying to solve the 1D heat equation with the following boundary conditions: 

I have the follwoing code developed but I need help implementing the natural BC. Can someone please help me? 
alpha=2.128*10^-5;
delta_x=0.05;
L=1;
delta_t=10;
t_final=1000;
maxk=t_final/delta_t;
N=L/delta_x;
w=alpha*delta_t/(delta_x^2);
%time grid
t=0:delta_t:t_final;
%mesh grid
x=0:delta_x:L;
[j_min, j_max]=size(x);
% Initial Condition u(x,0)=x/L
for i=1:N+1
    x(i)=(i-1)*delta_x;
    u(i,1)=x(i)/L;
end
% Boundary condition u(0,t)=0, du/dx(L,t)=0
% u(N+1,maxk+1)=zeros;
for Q=1:maxk+1;
    u(1,Q)=0;
end
e = ones(N+1,1);
L1 = spdiags([e -2*e e], -1:1, N+1, N+1);
L1(1,1)=L1(1,1)+1;
L1(N+1,N+1)=L1(N+1,N+1)+1;
% Defining matricies mright and mleft for CN method
aal(1:N-2)=-w;
bbl(1:N-1)=2.+2.*w;
ccl(1:N-2)=-w;
MMl=diag(bbl,0)+diag(aal,-1)+diag(ccl,1);
aar(1:N-2)=w;
bbr(1:N-1)=2.-2.*w;
ccr(1:N-2)=w;
MMr=diag(bbr,0)+diag(aar,-1)+diag(ccr,1);
%implementation of CN method
for P=2:maxk+1    
    uu=u(2:N,P-1);
    u(2:N,P)=inv(MMl)*MMr*uu;
end
figure(1)
plot(x,u(:,end))
xlabel('position')
ylabel('temp')
title('C-N')
%
%
u1(N+1,maxk+1)=zeros;
%Matrix for simple implict 
aa(1:N-2)=-w;
bb(1:N-1)=2+2*w;
cc(1:N-2)=-w;
MM=diag(bb,0)+diag(aa,-1)+diag(cc,1);
%implementation of simple implict 
for B=2:maxk+1;
    for Y=1:maxk;
    u(N+1,Y+1)=u(N+1,Y)+w*(2*u(N,Y)-2*u(N+1,Y));
end
    uuu=u1(2:N,B-1);
    u1(2:N,B)=MM*uuu;
end
figure (2)
plot(x,u1(:,end))
title('Simple Implicit')
xlabel('position')
ylabel('temp')
0 Comments
Answers (0)
See Also
Categories
				Find more on Calculus in Help Center and File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!