Finite Difference implicit solver (Crank-Nicolson) compare with analytical solution

7 views (last 30 days)
why my results from analytical and imilicit method doesn't match?
clc
close all
clf
L = 100;
delt = 10;
delx = 10;
D = 10;
n = (L/delx)+1;
lamda = (D*delt)/delx^2;
k = (0:delt:500);
T= zeros(length(k),n);
% Initial & Boundary Condition
T(:,1) = 16;
T(:,n) = 11;
T(1,2:n-1) = 16;
% Finite Difference implicit solver (Crank-Nicolson)
% Setup tri-diagonal matrix entries for the internal nodes
a = zeros(1,n);
b = zeros(1,n);
c = zeros(1,n);
d = zeros(1,n);
a(1)= 0; b(1)= 1; c(1)= 0; d(1)= 16;
a(n)= 0; b(n)= 1; c(n)= 0; d(n)= 11;
for q = 2:1:n-1
a(q)= -(lamda);
b(q)= 2*(1+ lamda);
c(q)= -(lamda);
d(q)= (2*T(1,q)) + (2*((T(1,q-1)- 2*T(1,q)+ T(1,q+1))/delx^2)*delt);
end
for i = 2: length (k)
T(i,:)= Tridiag (a,b,c,d); % Call tri-diagonal function
for q = 2:1:n-1
d(q)= (2*T(i,q)) + (2*((T(i,q-1)- 2*T(i,q)+ T(i,q+1))/delx^2)*delt);% this allow to move to next time step
end
end
% Analytical Solution
T1 = 16;
T2 = 11;
D = 10;
t=[10 20 40 80 160 250 500];
x=[0:10:100];
T_ana= zeros(length(x),length(t));
for i= 1:length(x)
for j = 1 : length (t)
constant = 0;
for q = 1:50
term1 = ((T2 - T1)*cos(q * pi))/q;
term2 = sin((q*pi*x(i))/L);
term3 = exp(-(D*(q)^2*(pi)^2*t(j))/(L)^2);
constant = constant + (term1*term2*term3);
end
tfinal = T1+((T2 - T1)*x(i))/L+((2/pi)*(constant));
T_ana(i,j)= tfinal;
end
end

Answers (1)

SaiDileep Kola
SaiDileep Kola on 26 Mar 2021
Refer this link

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!