Plotting FRF with imaginary and real numbers
11 views (last 30 days)
Show older comments
Hello, I have a file of all the FRF functions of an experiment, and it is computed in complex numbers + real part. I would like to know if it is possible to plot the graphic of it (resulting in the natural frequencies and stuff) only having this data?
it is like this:
-0.0915237963199616 + 0.00000000000000i -0.0666214004158974 - 0.0629538968205452i -0.0647708997130394 - 0.0962110981345177i 0.000384484999813139 - 0.189506992697716i 0.104717001318932 - 0.171706005930901i 0.145686000585556 - 0.117163002490997i 0.148408994078636 - 0.0817890018224716i 0.150115996599197 - 0.0637563988566399i 0.149434000253677 - 0.0457847006618977i 0.151601999998093 - 0.0343611985445023i 0.144703000783920 - 0.0156481992453337i 0.134606003761292 - 0.00748514989390969i 0.119563996791840 - 0.00314980000257492i and so on
0 Comments
Accepted Answer
Star Strider
on 19 Aug 2019
‘I would like to know if it is possible to plot the graphic of it (resulting in the natural frequencies and stuff) only having this data?’
It is.
However you also need to have the associated frequency vector if you want to make any sense of it.
7 Comments
Star Strider
on 14 Sep 2019
I actually have no idea, because none of those numbers were in your original question.
Try this:
FRF = [ -0.0915237963199616 + 0.00000000000000i; -0.0666214004158974 - 0.0629538968205452i; -0.0647708997130394 - 0.0962110981345177i; 0.000384484999813139 - 0.189506992697716i; 0.104717001318932 - 0.171706005930901i; 0.145686000585556 - 0.117163002490997i; 0.148408994078636 - 0.0817890018224716i; 0.150115996599197 - 0.0637563988566399i; 0.149434000253677 - 0.0457847006618977i; 0.151601999998093 - 0.0343611985445023i; 0.144703000783920 - 0.0156481992453337i; 0.134606003761292 - 0.00748514989390969i; 0.119563996791840 - 0.00314980000257492i];
Fv = linspace(0, 1, numel(FRF))*8000; % Frequency Vector
figure
plot(Fv, abs(FRF))
grid
xlabel('Frequency')
ylabel('Amplitude')
Fvi = linspace(0, 1, max(Fv)/10)*max(Fv); % New Frequency Vector
FRFi = interp1(Fv, abs(FRF), Fvi, 'pchip'); % Interpolate
figure
plot(Fvi, FRFi)
grid
xlabel('Frequency')
ylabel('Amplitude')
Experiment to get the result you want.
More Answers (0)
See Also
Categories
Find more on Vibration Analysis in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!