How does bayesopt() optimise using categorical optimizable variables?
4 views (last 30 days)
Show older comments
I have been using the bayesopt() function to perform Bayesian optimisation for material design. I have one set of optimisable variables that are of categorical data type. I was wondering how Gaussian process regression is performed when categorical input variables are used? Is it simply a case of using one-hot encoding?
Many thanks,
James
0 Comments
Accepted Answer
Don Mathis
on 5 Apr 2019
The bayesopt function uses a special technique to handle categorical variables. One-hot coding is not used. Instead, bayesopt encodes the categorical variable as an integer variable, and uses an ARD Gaussian Process kernel with a fixed spatial scale on that dimension that is so small that neighboring integer values have virtually no effect on each other. The value of the objective function model at x=7 has no effect on the model's value at x=8. The result is that the distinct integer values must be probed individually to learn what the objective function is at that value. One-hot coding would probably produce similar behavior but would increase the number of variables and require a constraint between them to make sure only one dimension is probed at a time.
3 Comments
Don Mathis
on 5 Apr 2019
Unfortunately, no. As far as I know this is a novel technique. I know of at least one other B.O. package that encodes categoricals as integers, but then it treats the integer variable like any other, estimating a kernel scale that ties neighboring values together, which to me seems inappropriate.
More Answers (0)
See Also
Categories
Find more on Model Building and Assessment in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!