Standard error for custom Maximum Likelihood Estimation

2 views (last 30 days)
Hey,
i've used the Maximum Likelihood Estimation (https://de.mathworks.com/help/stats/mle.html) with an custom log probability density function to calculate the parameteres of my regression model. Now I'am trying to get the t-statistic of these estimates. I know that I have to divide my estimate by the standard error of the estimate. How do I calculate the standard error?
Currenly I'am using the mlecov funktion (https://de.mathworks.com/help/stats/mlecov.html) but my Estimates seem off.
basismle = mle(data,'logpdf',@custlogpdf,'start',[0,0,0,0,0,0],'Options',options); % custom likelihood estimate
acov = mlecov(phat,data,'logpdf',@custlogpdf) % Asymptotic covariance
se = sqrt(diag(acov)) % Standard Error
tstat = [phat(1,1)/se(1,1); % t-statistic
phat(1,2)/se(2,1);
phat(1,3)/se(3,1);
phat(1,4)/se(4,1);
phat(1,5)/se(5,1);
phat(1,6)/se(6,1)]
Thanks in advance ,
Marcel

Answers (0)

Categories

Find more on Fit Postprocessing in Help Center and File Exchange

Products


Release

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!