4-point first derivative

17 views (last 30 days)
alburary daniel
alburary daniel on 3 Aug 2018
Commented: Aquatris on 13 Mar 2019
I am given data t=[0 1 2 3 4 5 6 7 8 9 10] and
y(t)=[1 2.7 5.8 6.6 7.5 9.9 10.2 11.2 12.6 13.6 15.8]
and have to evaluate the derivative of y at each given t value
using the following finite difference schemes
at 4-point first derivative
My code at finite difference is
t= 0: 1: 10;
y= [1 2.7 5.8 6.6 7.5 9.9 10.2 11.2 12.6 13.6 15.8];
n=length(y);
dfdx=zeros(n,1);
dfdx(t)=(y(2)-y(1))/(t(2)-t(1));
for i=2:n-1
dfdx(1)=(y(i+1)-y(i-1))/(t(i+1)-t(i-1));
end
dfdx(n)=(y(n)-y(n-1))/(t(n)-t(n-1));
but I have interesting of method of 4-point first derivative for more accuracy thanks in avance!
  2 Comments
Aquatris
Aquatris on 3 Aug 2018
Please format the question properly and include the "following scheme" for us to be able to help.

Sign in to comment.

Answers (1)

Aquatris
Aquatris on 3 Aug 2018
I found a source where the equations for the differentiation are shown, with some typos. Here is an example code, where d4 is 4 point d5 is 5 point differentiation.
dt = 1e-3;
t = 0:0.001:20;
x = sin(0.4*t)+exp(-0.9*t); % sample signal
xd = 0.4*cos(0.4*t)-0.9*exp(-0.9*t);% sample signals exact derivative
n=length(x);
d4=zeros(size(x));
d5=zeros(size(x));
for j = 3:n-2;
d4(j) = -1/6/dt*(-2*x(j+1)-3*x(j)+6*x(j-1)-x(j-2));
d5(j)= 1/12/dt*(x(j-2) - 8.*x(j-1) + 8.*x(j+1) - x(j+2));
end
d4(1:2)=d4(3);
d4(n-1:n)=d4(n-2);
d5(1:2)=d5(3);
d5(n-1:n)=d5(n-2);
plot(t,xd,t,d4,'r--',t,d5,'m-.') % comparison plot
  6 Comments
Mohammad Ezzad Hamdan
Mohammad Ezzad Hamdan on 13 Mar 2019
What do you mean by the terms below;
d5(1:2)=d5(3);
d5(n-1:n)=d5(n-2);
Aquatris
Aquatris on 13 Mar 2019
It is not possible to calculate the first 2 or last 2 elements for the d5, I just equate them to some value. For the last 2 elements I hold the last calculated value of d5 and for the first 2 elements I hold the first calculated value. Depending on the application this might be acceptable.

Sign in to comment.

Categories

Find more on Mathematics and Optimization in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!