Dynamic response ode15s
2 views (last 30 days)
Show older comments
Hi,
I would like to get the dynamic response of this system of equations when one of the parameters (Pin) changes in time. Meaning that at baseline conditions Pin=60, but if I increase it at time=20 up to Pin=70, I would like to see how long it takes the system to get to steady state and what the plot looks like. The response I get now is very unusual, could you please help me spot the mistake? Thank you.
tspan=0:0.1:100;
cond=[%sat
51.2112 ; 63.8766 ; 60.7979 ; 49.0010 ; 35.3767 ; 28.5718 ; 33.7930 ; 31.1300 ; 30.6594 ; 29.9741 ; 30.2541 ; 29.6828 ; 28.9798 ]; %pt
Pin=60; %baseline
[T,Y] = ode15s(@(t,y)fun1(t,y,Pin),tspan, cond,[]);
function dy= fun1(t,y,Pin)
%baseline Pin=60
dy=zeros(13,1);
if t>20
Pin= 70;
end
pt1=y(1); pt2=y(2); pt3=y(3); pt4=y(4); pt5=y(5); pt6=y(6); pt7=y(7); pt8=y(8); pt9=y(9); pt10=y(10); pt11=y(11); pt12=y(12); pt13=y(13);
% -----Constants -----
N=3.38*10^6; k=2.96*10^-7;
alphat=2.6*10^-5; chb=0.2; M=30*10^-9; K=5*10^(-8)*10^-3; H=0.42; S0=0.98;
Ey=10^4*0.00750062;
v=3* 7.5*10^-6; %kinematic viscosity [mmHg s]
r=[0.0119850000000000;0.00958500000000000;0.00764000000000000;0.00604000000000000;0.00473000000000000;0.00366000000000000;0.00400000000000000;0.00575500000000000;0.00726500000000000;0.00889500000000000;0.0107250000000000;0.0128500000000000;0.0153850000000000]; %mm
L=[1.27076497943190;0.932650928622621;0.544932761536915;0.303082765473283;0.161799106136796;0.155424891414508;0.245072221621871;0.475103125625241;0.273016623935407;0.427646038844292;0.634082325832342;0.846354695529459;0.938696601022114]; %mm
h=[0.00484000000000000;0.00425000000000000;0.00381000000000000;0.00349000000000000;0.00327000000000000;0.00314000000000000;0.000309000000000000;0.00115000000000000;0.00145000000000000;0.00178000000000000;0.00215000000000000;0.00257000000000000;0.00308000000000000];%mm
mu=[1.19409872390289e-05;1.12760032450214e-05;1.06583134073916e-05;1.00804835896938e-05;9.56162410894012e-06;9.20633512007761e-06;9.29628357913371e-06;9.96996247072375e-06;1.05291656347798e-05;1.10660983739492e-05;1.16035344790804e-05;1.21594980256614e-05;1.27473361251949e-05]; %mmHg*s
R= [1.8728 3.1728 4.3411 5.8457 7.8705 20.3059 22.6623 10.9961 2.6277 1.9250 1.4161 0.9612 0.5439]; %[mmHg*s/ml]
pdrop=[0,6.93,5.87,4.02,2.70,1.82,2.35,2.62,1.27,0.61,0.89,1.31,1.78,2.01];
for i=1:1:14
if i==1
pb(i)=Pin;
else
pb(i)=pb(i-1)-pdrop(i);
end
end
diffp=diff(pb)*(-1);
pb_s=[pb(1)+pb(2);pb(2)+pb(3);pb(3)+pb(4);pb(4)+pb(5);pb(5)+pb(6);pb(6)+pb(7);pb(7)+pb(8);pb(8)+pb(9); pb(9)+pb(10);pb(10)+pb(11);pb(11)+pb(12);pb(12)+pb(13);pb(13)+pb(14)];
for z=1:1:14
S(z)=(((pb(z)^3+150*pb(z))^(-1) *23400)+1)^(-1);
end
deltaS=diff(S)*(-1);
for j=1:1:13
kin=v;
compl(j)=((3*pi*L(j)*r(j)^3)/(2*Ey*h(j)) )*10^-3;
Vb(j)=(compl(j)/2)*pb_s(j); %[ml]
q(j)=diffp(j)/R(j);
Vt(j)= chb*H*q(j)*deltaS(j)/M;
end
dpt1=1/(alphat*Vt(1))*( (2*pi*K*r(1)*L(1))/h(1) *(1/2*(pb(1)+pb(2)) -pt1) -M*Vt(1));
dpt2=1/(alphat*Vt(2))*( (2*pi*K*r(2)*L(2))/h(2) *(1/2*(pb(2)+pb(3)) -pt2) -M*Vt(2));
dpt3=1/(alphat*Vt(3))*( (2*pi*K*r(3)*L(3))/h(3) *(1/2*(pb(3)+pb(4)) -pt3) -M*Vt(3));
dpt4=1/(alphat*Vt(4))*( (2*pi*K*r(4)*L(4))/h(4) *(1/2*(pb(4)+pb(5)) -pt4) -M*Vt(4));
dpt5=1/(alphat*Vt(5))*( (2*pi*K*r(5)*L(5))/h(5) *(1/2*(pb(5)+pb(6)) -pt5) -M*Vt(5));
dpt6=1/(alphat*Vt(6))*( (2*pi*K*r(6)*L(6))/h(6) *(1/2*(pb(6)+pb(7)) -pt6) -M*Vt(6));
dpt7=1/(alphat*Vt(7))*( (2*pi*K*r(7)*L(7))/h(7) *(1/2*(pb(7)+pb(8)) -pt7) -M*Vt(7));
dpt8=1/(alphat*Vt(8))*( (2*pi*K*r(8)*L(8))/h(8) *(1/2*(pb(8)+pb(9)) -pt8) -M*Vt(8));
dpt9=1/(alphat*Vt(9))*( (2*pi*K*r(9)*L(9))/h(9) *(1/2*(pb(9)+pb(10)) -pt9) -M*Vt(9));
dpt10=1/(alphat*Vt(10))*( (2*pi*K*r(10)*L(10))/h(10) *(1/2*(pb(10)+pb(11)) -pt10) -M*Vt(10));
dpt11=1/(alphat*Vt(11))*( (2*pi*K*r(11)*L(11))/h(11) *(1/2*(pb(11)+pb(12)) -pt11) -M*Vt(11));
dpt12=1/(alphat*Vt(12))*( (2*pi*K*r(12)*L(12))/h(12) *(1/2*(pb(12)+pb(13)) -pt12) -M*Vt(12));
dpt13=1/(alphat*Vt(13))*( (2*pi*K*r(13)*L(13))/h(13) *(1/2*(pb(13)+pb(14)) -pt13) -M*Vt(13));
pt_tot=[pt1;pt2;pt3;pt4;pt5;pt6;pt7;pt8;pt9;pt10;pt11;pt12;pt13];
%Weighted sum of pt
for l=1:1:13
pt_weight(l)=pt_tot(l)*Vt(l);
end
Vt_sum=sum(Vt);
ptot=sum(1/Vt_sum * (pt_weight));
dy=[dpt1;dpt2;dpt3;dpt4;dpt5;dpt6;dpt7;dpt8;dpt9;dpt10;dpt11;dpt12;dpt13];
%%STORE VALUES
fileID=fopen('JUMP_ptot_ch.txt','a');
fprintf(fileID,' %2.9f\n',ptot);
fclose(fileID);
This is the code I use for the plot which I will also attach here.
figure(2)
TIME= linspace(0,100,44);
jump = 'JUMP_ptot_ch.txt';
H = importdata(jump);
plot(TIME,H,'Linewidth',2)
title('Dynamic pt change with Pin=40 if TIME>20 else Pin=60')
xlabel('time [s]')
ylabel('weighted partial tissue pressure pt change [mmHg]')
0 Comments
Answers (0)
See Also
Categories
Find more on Classical Control Design in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!