SVM classification weight fitcsvm

18 views (last 30 days)
Pegah Kassraian Fard
Pegah Kassraian Fard on 11 Jun 2018
Commented: Ramya k on 7 Dec 2020
Hi,
I am training a linear SVM classifier:
cvFolds = crossvalind('Kfold', labels, nrFolds);
for i = 1:nrFolds % iteratre through each fold
testIdx = (cvFolds == i); % indices of test instances
trainIdx = ~testIdx; % indices training instances
% train the SVM
% 'OptimizeHyperparameters','auto'
cl = fitcsvm(features(trainIdx,:), labels(trainIdx),'KernelFunction',kernel,'Standardize',true,...
'BoxConstraint',C,'ClassNames',[0,1], 'Solver', solver);
[labelPred,scores] = predict(cl, features(testIdx,:));
eq = sum(labelPred==labels(testIdx));
accuracy(i) = eq/numel(labels(testIdx));
end
As is obvious, the trained SVM model is stored in cl. Checking the model parameters in cl I do not see which parameters correspond to classifier weight - feedback much appreciated.

Answers (1)

Prashant Lawhatre
Prashant Lawhatre on 17 Nov 2018
weight_vector=c1.Beta;
bais_vector=c1.Bias;

Categories

Find more on Statistics and Machine Learning Toolbox in Help Center and File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!