Info

This question is closed. Reopen it to edit or answer.

How can I numerically find a solution of a series of two differential equations.

1 view (last 30 days)
So, I have to numerically find the solution to the following system (image attached) in a neighborhood of the equilibrium. Equilibrium in this case is x'(t)=0 & y'(t)=0.
Also these are the values of the constants. Alpha=4 Beta=3 L=2 k=1
What should be the MATLAB code for this? One friend suggested using ode45 but I do not know exactly how.
[In case you cannot view the image:
X’(t) = -alpha x(t) + k y(t)
Y’(t) = L x(t) – beta y(t)]

Answers (1)

Roger Stafford
Roger Stafford on 26 Oct 2017
Edited: Roger Stafford on 26 Oct 2017
This is hardly a matlab problem. At an equilibrium you would have the equations:
-4*x + 1*y = 0
2*x - 3*y = 0
The only possible simultaneous solution for that is x = y = 0.
The general solution to that problem is:
x = C1*exp(-2*t)-C2*exp(-5*t)
y = 2*C1*exp(-2*t)+C2*exp(-5*t)
where C1 and C2 are constants depending on initial conditions of x and y. To arrive at a "neighborhood" of x' = 0 and y' = 0, you would have to approach infinity for t. In other words, equilibrium is only approached asymptotically.

This question is closed.

Products

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!