Here is my code.
Please....
Thank you~!
inputLayer = imageInputLayer([227 227 3]);
middleLayers = [
    convolution2dLayer([11 11], 96,'stride',4, 'Padding', 0, 'NumChannels',3 )
    reluLayer()
    crossChannelNormalizationLayer(5)
    maxPooling2dLayer(3,'stride',2, 'Padding',0)
    convolution2dLayer([5 5], 256,'stride',1, 'Padding', 2, 'NumChannels',96)    
    reluLayer()
    crossChannelNormalizationLayer(5)
    maxPooling2dLayer(3,'stride',2, 'Padding',0)
    convolution2dLayer([3 3], 384,'stride',1, 'Padding', 1,'NumChannels',256)
    reluLayer()
    convolution2dLayer([3 3], 384,'stride',1, 'Padding', 1, 'NumChannels',384)
    reluLayer()
    convolution2dLayer([3 3], 256,'stride',1, 'Padding', 1,'NumChannels',384)
    reluLayer()
    maxPooling2dLayer(3,'stride',2, 'Padding',0)
    ];
finalLayers = [
    % Add a fully connected layer with 64 output neurons. The output size
    % of this layer will be an array with a length of 64.
    fullyConnectedLayer(4096)
    reluLayer()
    dropoutLayer(0.5)
    fullyConnectedLayer(4096)
    reluLayer()
    dropoutLayer(0.5)
      fullyConnectedLayer(width(Dataset))
      % Add the softmax loss layer and classification layer. 
      softmaxLayer()
      classificationLayer()
  ];
layers = [
    inputLayer
    middleLayers
    finalLayers
    ]
optionsStage1 = trainingOptions('sgdm', ...
    'MiniBatchSize', 4, ...
    'MaxEpochs', 10, ...
    'InitialLearnRate', 1e-5, ...
    'CheckpointPath', tempdir);
% Options for step 2
optionsStage2 = trainingOptions('sgdm', ...
    'MiniBatchSize', 4, ...
    'MaxEpochs', 10, ...
    'InitialLearnRate', 1e-5, ...
    'CheckpointPath', tempdir);
% Options for step 3.
optionsStage3 = trainingOptions('sgdm', ...
    'MiniBatchSize', 4, ...
    'MaxEpochs', 10, ...
    'InitialLearnRate', 1e-6, ...
    'CheckpointPath', tempdir);
% Options for step 4.
optionsStage4 = trainingOptions('sgdm', ...
    'MiniBatchSize', 4, ...
    'MaxEpochs', 10, ...
    'InitialLearnRate', 1e-6, ...
    'CheckpointPath', tempdir);
options = [
    optionsStage1
    optionsStage2
    optionsStage3
    optionsStage4
    ];
tic
% A trained network is loaded from disk to save time when running the
% example. Set this flag to true to train the network. 
doTrainingAndEval = true %false;
if doTrainingAndEval
    % Set random seed to ensure example training reproducibility.
    rng(0);
      % Train Faster R-CNN detector. Select a BoxPyramidScale of 1.2 to allow
      % for finer resolution for multiscale object detection.
      detector = trainFasterRCNNObjectDetector(trainingData, layers, options, ...
          'NegativeOverlapRange', [0 0.3], ...
          'PositiveOverlapRange', [0.6 1], ...
          'SmallestImageDimension', [400], ...
          'BoxPyramidScale', 1.2);
  else
      %         'NumStrongestRegions', 500, ...
  %         'MinBoxSizes', [21 21], ...
      % Load pretrained detector for the example.
      detector = data.detector;
  end
  toc







