I need help with permutations.

2 views (last 30 days)
Muhendisleksi
Muhendisleksi on 5 May 2017
Commented: Andrei Bobrov on 5 May 2017
for example: There are matrix m and r:
m = [1.2000 2.4000 1.3000
2.3000 1.5000 1.0000];
r = [0.2000 0.4000 0.3000];
rr = triu(ones(3),1);
rr(rr > 0) = r;
mm = bsxfun(@times,permute(m,[2,3,1]),permute(m,[3,2,1]));
K = bsxfun(@times,mm,rr + rr.' + eye(3));
This code gives me the result I want.
The values of the matrix m can vary. for example:
m = [1.2000 2.4000 1.3000
2.3000 1.5000 1.0000
1.2000 2.4000 3.0000];
r = [0.2000 0.4000 0.3000 0.4444];
So how can I write code like "[row col] = size (m)"?
I mean;
rr = triu(ones(row),1);
rr(rr > 0) = r;
mm = bsxfun(@times,permute(m,[?,?,?]),permute(m,[?,?,?]));
K = bsxfun(@times,mm,rr + rr.' + eye(row));
  5 Comments
Muhendisleksi
Muhendisleksi on 5 May 2017
https://www.mathworks.com/matlabcentral/answers/338775-how-can-i-create-the-matrix-in-the-photo
Andrei Bobrov
Andrei Bobrov on 5 May 2017
" m = [1.2000 2.4000 1.3000
2.3000 1.5000 1.0000
1.2000 2.4000 3.0000];
r = [0.2000 0.4000 0.3000 0.4444]; "
What result do you expect, what is the expression for K ?

Sign in to comment.

Answers (1)

dpb
dpb on 5 May 2017
Edited: dpb on 5 May 2017
What's wrong with
[r,c]=size(m);
mm = bsxfun(@times,permute(m,[r,c,1]),permute(m,[c,r,1]));
ADDENDUM
Which, if you haven't recognized it, can be written as
permute(m,[size(m),1]),permute(m,[flip(size(m)),1])
ERRATUM
As Guillaume astutely points out, the permute indices are NOT size(m)-dependent, but reflect the dimensionality of m as 2D array. The above, while cute, is nonsensical for the purpose.
  5 Comments
Guillaume
Guillaume on 5 May 2017
No idea what the original purpose of the code is, and I'm not going to try to decrypt some obscure image with no associated explanation, but it's clear to me that in the original code, the dimensions to permute do not depend on the size of m. It's always going to be [2 3 1] and [3 2 1] respectively.
The only thing that would need to change in the original code if the size of m changes is the size of rr, with
rr = triu(ones(size(m, 2)));
You would of course need more elements in r to accodomate the change in size of rr.
dpb
dpb on 5 May 2017
Good catch, Guillaume! The permutations are not size-dependent but dimensional.
I didn't really try to read the image, either, and while the above will respond to OP's plea, it isn't useful. I'll scratch it altho I was kinda' proud of the flip(size()) thingie; I'd not thunk a' it before and can recall at least one instance could have used it to eliminate a temporary...

Sign in to comment.

Categories

Find more on Resizing and Reshaping Matrices in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!