How to use Bayesian Optimization?
2 views (last 30 days)
Show older comments
I'm trying to run the following Mathworks example with my own X and Y:
"Tune Random Forest Using Quantile Error and Bayesian Optimization"
But, I'm getting the following error:
Undefined function or variable 'Y'.
I have attached the modified code (place both files in one folder on your PC drive). Can anyone help?
0 Comments
Answers (1)
Don Mathis
on 20 Apr 2017
You need to pass Y into oobErrRF. Change its first line to
function oobErr = oobErrRF(params,X,Y)
And change the call on line 66 of your main file to
results = bayesopt(@(params)oobErrRF_editted(params,X,Y),hyperparametersRF,...
That fixes your error. But after that you get a new error, because inside oobErrRF you're calling oobQuantileError on a classification random forest, while it's only defined for regression random forests. Are you trying to do classification or regression?
2 Comments
Don Mathis
on 27 Apr 2017
Yes you can. I edited your code to call 'oobError' instead of 'oobQuantileError', and took the mean over all trees. I also told your final 'Mdl' to train with Method 'classification' and turned on 'OOBPredictions' so you can see the performance of the final model. I also told 'bayesopt' to use Verbose=1. I've attached the edited files.
See Also
Categories
Find more on Classification Ensembles in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!