For amusement, a Maple version of the general solution, using direct numeric calculations without creating the intermediate values.
H := proc (M)
local min_numdig, contrib_from_min, leftover, dp1, base_number, dig, dig_offset;
min_numdig := floor(((1/9)*ln(10)+LambertW((1/90)*ln(10)*(9*M-1)*10^(8/9)))/ln(10));
dp1 := min_numdig+1;
contrib_from_min := (1/90)*10^dp1*(9*min_numdig-1)+1/9;
leftover := M-contrib_from_min;
if leftover = 0
then
dig := "9"
else
base_number := 10^min_numdig-1+floor(leftover/dp1);
dig_offset := `mod`(leftover, dp1);
if dig_offset = 0
then
dig_offset := dp1
else
base_number := base_number+1
end if;
dig := sprintf("
end if;
dig
end proc;
Note: this fails on 0 due to both a Maple technicality and a logic bug. The mathematics of it is presented without proof.
No MATLAB version of this will be provided, as the question is obviously a homework question.