How can i solve these two equations simultaneously for A and B ?

1 view (last 30 days)
I have a system of 16 equations with 4 integration constants (A, B, C and D) in each soil layer (4 layers) and each soil layer has 4 stress-strain equations. I need to solve them simultaneously for 16 constants.
Below is the simplified form of two equations, which i am trying to solve for A and B.
int(5*besselj(0,x)*besselj(1, 0.5*x)*x*(A+5) ,x,0,10) = 0;
int(5*besselj(0,x)*besselj(1, 0.8*x)*x*(A+B) ,x,0,10) = A;

Accepted Answer

Walter Roberson
Walter Roberson on 27 Aug 2016
The multiply by (A+5) in the first equation leads to the trivial solution A=-5, zeroing the effect of the besselj .
You can substitute A into the second equation and then do a numeric solve, restriction your range for B from 5 onwards; the numeric solution turns out to be about B = 5.57463755753316
  1 Comment
Asif Arshid
Asif Arshid on 27 Aug 2016
Edited: Asif Arshid on 27 Aug 2016
Thank you Walter Roberson for your quick reply. During my hit and trials of different functions, I got "vpasolve", it helped to solve for the equations upto the precision i was looking for.
z1 = int(5*besselj(0,x)*besselj(1,0.8*x)*x*(A+5),x,0,10);
z2 = int(5*besselj(0,x)*besselj(1,0.7*x)*x*(A+B),x,0,10);
[A, B] = vpasolve([z1==0, z2==A], [A, B])
One can equate z1 and z2 to any constant, variable or even functions of A and B, it will give you the approximate solution with reasonable precision. Thanks a lot again.

Sign in to comment.

More Answers (0)

Categories

Find more on Symbolic Math Toolbox in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!