How to solve differential equation of 3 order analytically
2 views (last 30 days)
Show older comments
I would like to solve a system of differential equaions
x''[t] == -a0*(a1 - b*z'[t])*cos[w*t], x[to] == 0, x'[to] == 0
z''[t] == -a0*b*x'[t]*cos[w*t], z[to] == 0, z'[to] == 0
It reduces to a third order equation
z'''[t] == a*(1-c*z'[t])*cos^2[w*t]-tan(w*t)*w*z''[t], z[to] == 0, z'[to] == 0
syms u(x) a c w d
Du = diff(u, x);
D2u = diff(u, x, 2);
u(x) = dsolve(diff(u, x, 3) == a*(1-c*Du)*(cos(x))^2-tan(x)*d*D2u, u(to) == 0, Du(to) == 0)
Does not give solution. How to solve it in steps, maybe first for z'?
0 Comments
Answers (1)
Star Strider
on 9 Jul 2016
I would keep it as the original system (and change ‘to’ to 0):
syms x(t) z(t) a0 a1 b w
Dz = diff(z);
D2z = diff(z,2);
Dx = diff(x);
D2x = diff(x,2);
Eq1 = D2x == -a0 * (a1 - b*Dz) * cos(w*t);
Eq2 = D2z == -a0 * b * Dx * cos(w*t);
Soln = dsolve(Eq1, Eq2, x(0) == 0, Dx(0) == 0, z(0) == 0, Dz(0) == 0);
X = Soln.x;
Z = Soln.z;
X = simplify(X, 'steps', 20)
Z = simplify(Z, 'steps', 20)
This gives you two ‘solutions’ involving integrals, that it transformed with dummy variable ‘y’:
X =
-(a1*int(sin((a0*b*sin(w*y))/w), y, 0, t))/b
Z =
-(a1*int(exp(-(a0*b*sin(w*y)*1i)/w)*(exp((a0*b*sin(w*y)*1i)/w) - 1)^2, y, 0, t))/(2*b)
This is likely as close as you can get to an analytic solution.
0 Comments
See Also
Categories
Find more on Quadratic Programming and Cone Programming in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!