How to solve differential equation of 3 order analytically

2 views (last 30 days)
I would like to solve a system of differential equaions
x''[t] == -a0*(a1 - b*z'[t])*cos[w*t], x[to] == 0, x'[to] == 0
z''[t] == -a0*b*x'[t]*cos[w*t], z[to] == 0, z'[to] == 0
It reduces to a third order equation
z'''[t] == a*(1-c*z'[t])*cos^2[w*t]-tan(w*t)*w*z''[t], z[to] == 0, z'[to] == 0
syms u(x) a c w d
Du = diff(u, x);
D2u = diff(u, x, 2);
u(x) = dsolve(diff(u, x, 3) == a*(1-c*Du)*(cos(x))^2-tan(x)*d*D2u, u(to) == 0, Du(to) == 0)
Does not give solution. How to solve it in steps, maybe first for z'?

Answers (1)

Star Strider
Star Strider on 9 Jul 2016
I would keep it as the original system (and change ‘to’ to 0):
syms x(t) z(t) a0 a1 b w
Dz = diff(z);
D2z = diff(z,2);
Dx = diff(x);
D2x = diff(x,2);
Eq1 = D2x == -a0 * (a1 - b*Dz) * cos(w*t);
Eq2 = D2z == -a0 * b * Dx * cos(w*t);
Soln = dsolve(Eq1, Eq2, x(0) == 0, Dx(0) == 0, z(0) == 0, Dz(0) == 0);
X = Soln.x;
Z = Soln.z;
X = simplify(X, 'steps', 20)
Z = simplify(Z, 'steps', 20)
This gives you two ‘solutions’ involving integrals, that it transformed with dummy variable ‘y’:
X =
-(a1*int(sin((a0*b*sin(w*y))/w), y, 0, t))/b
Z =
-(a1*int(exp(-(a0*b*sin(w*y)*1i)/w)*(exp((a0*b*sin(w*y)*1i)/w) - 1)^2, y, 0, t))/(2*b)
This is likely as close as you can get to an analytic solution.

Categories

Find more on Quadratic Programming and Cone Programming in Help Center and File Exchange

Products

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!