How can I get the internal structure of idNeuralNetwork (RegressionNeuralNetwork) used in NLAR
8 views (last 30 days)
Show older comments
I have generated the identification of an error from the function sys = nlarx(z,R,NL), where NL=idNeural Network and I would like to know the internal structure (what operations are carried out and with what weights). Thanks!!


0 Comments
Answers (1)
Shantanu Dixit
on 24 Apr 2025
Edited: Shantanu Dixit
on 24 Apr 2025
Hi Daniel,
If I understood the query correctly, you're creating a nonlinear ARX model using 'nlarx' with a neural network nonlinearity ('idNeuralNetwork') and would like to examine its internal structure, including the operations and weights.
The neural network component in the model processes the regressors through multiple layers with specified activation functions. For example:
NL = idNeuralNetwork([10 5 2], ["relu", "tanh", "swish"])
After creating a nonlinear ARX model using 'nlarx' : sys = nlarx(z,R,NL), you can access the weights and architecture through 'Network' property of idNeuralNetwork as follows:
nn = sys.Nonlinearity;
disp(nn.Network.Parameters.Learnables(1))
% Name: "fc1_Weights"
% Value: ...
% Free: ...
% Parameters contains the learnable hyperparameters and initial hyperparameter values used by the network
% Learnables — Vector of tunable parameters that represent the weights and biases for the network
You can also refer to the 'idNeuralNetwork' documentation: https://www.mathworks.com/help/ident/ref/idneuralnetwork.html for more information.
Hope this helps!
See Also
Categories
Find more on Nonlinear ARX Models in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!