How can I evaluate the transition matrix using the fourth order Runge-Kutta ODEs

112 views (last 30 days)
I have a two-degree-of-freedom system. for solving the system I am trying to use RK4. Can anyone help me with correctly writing the transition matrix in my matlab code according to the definition in this reference?
% Time settings
t0 = 0;
tf = pi / omega_rad_s^2;
N = 100;
ts = (tf - t0) / N;
t = linspace(t0, tf, N+1);
%Initial condition
y01 = 1;
y02 = 0;
y03 = 0;
y04 = 0;
y = [y01; y02; y03; y04]; % IC vector
% Solve the system using RK4
for i = 1:N
k1 = Function_system(t(i), y(:, i));
k2 = Function_system(t(i) + ts/2, y(:, i) + ts/2 * k1);
k3 = Function_system(t(i) + ts/2, y(:, i) + ((sqrt(2)-1)/2) * ts * k1 + (1 - (1/sqrt(2))) * ts * k2);
k4 = Function_system(t(i) + ts, y(:, i) - (1/sqrt(2)) * ts * k2 + (1 + 1/sqrt(2)) * ts * k3);
y(:, i+1) = y(:, i) + ts/6 * (k1 + 2*(1 - (1/sqrt(2)))*k2 + 2*(1 + (1/sqrt(2)))*k3 + k4);
end
  2 Comments
Torsten
Torsten on 13 Nov 2024 at 20:41
Edited: Torsten on 13 Nov 2024 at 20:41
Here your function "Function_system" has three inputs:
k1 = Function_system(t(i), y(:, i), K_theta);
Here it has two:
k2 = Function_system(t(i) + ts/2, y(:, i) + ts/2 * k1);
What is correct ?
Nikoo
Nikoo on 13 Nov 2024 at 21:04
k1 = Function_system(t(i), y(:, i));
k2 = Function_system(t(i) + ts/2, y(:, i) + ts/2 * k1);
All should have 2

Sign in to comment.

Answers (2)

Torsten
Torsten on 13 Nov 2024 at 21:11
Edited: Torsten on 13 Nov 2024 at 21:17
Seems to work. What's your problem ?
Don't use the transition matrix to integrate in one pass. If you have to, generate it with symbolic inputs to "Function_system".
% Time settings
t0 = 0;
tf = 3;
N = 100;
ts = (tf - t0) / N;
t = linspace(t0, tf, N+1);
%Initial condition
y01 = 1;
y02 = 1;
y03 = 1;
y04 = 1;
y = [y01; y02; y03; y04]; % IC vector
% Solve the system using RK4
for i = 1:N
k1 = Function_system(t(i), y(:, i));
k2 = Function_system(t(i) + ts/2, y(:, i) + ts/2 * k1);
k3 = Function_system(t(i) + ts/2, y(:, i) + ((sqrt(2)-1)/2) * ts * k1 + (1 - (1/sqrt(2))) * ts * k2);
k4 = Function_system(t(i) + ts, y(:, i) - (1/sqrt(2)) * ts * k2 + (1 + 1/sqrt(2)) * ts * k3);
y(:, i+1) = y(:, i) + ts/6 * (k1 + 2*(1 - (1/sqrt(2)))*k2 + 2*(1 + (1/sqrt(2)))*k3 + k4);
end
plot(t,y(3,:))
function dydt = Function_system(t,y)
dydt = [-y(1),-2*y(2),y(3),2*y(4)].';
end
  13 Comments
Nikoo
Nikoo on 18 Nov 2024 at 21:40
Yes, my goal is to find the transition matrix and analyze its eigenvalues.
I thought that ODE45 might be a suitable function, but after doing some research, I think using RK4 might give me more accurate results.
Torsten
Torsten on 18 Nov 2024 at 22:33
Edited: Torsten on 18 Nov 2024 at 22:34
I thought that ODE45 might be a suitable function, but after doing some research, I think using RK4 might give me more accurate results.
No, but how to find the numerical transition matrix for "ODE45" ? Do you know how to compute K for the scheme implemented in "ODE45" ?

Sign in to comment.


Torsten
Torsten on 22 Nov 2024 at 16:04
Edited: Torsten on 22 Nov 2024 at 16:15
If it's still of interest: this code seems to work correctly. I don't know why using
n = size(A,1);
E = A(t+dt/2)*(eye(n)+dt/2*A(t));
F = A(t+dt/2)*(eye(n)+(-1/2+1/sym(sqrt(2)))*dt*A(t)+(1-1/sym(sqrt(2)))*dt*E);
G = A(t+dt)*(eye(n)-dt/sym(sqrt(2))*E+(1+1/sym(sqrt(2)))*dt*F);
K = eye(n)+dt/6*(A(t)+2*(1-1/sym(sqrt(2)))*E+2*(1+1/sym(sqrt(2)))*F+G);
gives wrong results.
format long
syms y [4 1]
syms t dt
ct = cos(2*t);
st = sin(2*t);
% Define inertia matrix [M]
M11 = 3 + 1 + ct;
M12 = -st;
M21 = -st;
M22 = 3 + 1 - ct;
M = [M11 M12;M21 M22];
Minv = inv(M);
% Define damping matrix [D]
D11 = (1 - ct) - (1 + ct) - 2 * st;
D12 = st + 0.4*st - 2*(1 + ct) - 2*ct;
D21 = st + 0.4*st + 2*(1 - ct) - 2*ct;
D22 = (1 + ct) - (1 - ct) + 2 * st;
D = [D11 D12; D21 D22];
% Define stiffness matrix [K]
K11 = - (1 - ct) + st;
K12 = -st + 0.5*(1 + ct);
K21 = -st - 0.5*(1 - ct);
K22 = - (1 + ct) - st;
K = [K11 K12; K21 K22];
% Calculate the inverse matrix-vector product and assign correctly
acceleration = -Minv * (D * [y(2); y(4)] + K * [y(1); y(3)]);
% System equations
dy_dt = [y(2) ; acceleration(1); y(4); acceleration(2)] ;
b = zeros(4,1);
vars = y;
[A(t),~] = equationsToMatrix(dy_dt==b,vars);
% Compute transition matrix K
Function_system = @(t,y)A(t)*y;
k1 = Function_system(t, y);
k2 = Function_system(t + dt/2, y + dt/2 * k1);
k3 = Function_system(t + dt/2, y + ((sqrt(2)-1)/2) * dt * k1 + (1 - (1/sqrt(2))) * dt * k2);
k4 = Function_system(t + dt, y - (1/sqrt(2)) * dt * k2 + (1 + 1/sqrt(2)) * dt * k3);
ynew = y + dt/6 * (k1 + 2*(1 - (1/sqrt(2)))*k2 + 2*(1 + (1/sqrt(2)))*k3 + k4);
b = zeros(4,1);
vars = y;
[K,~] = equationsToMatrix(ynew==b,vars);
% Compute numerical solution for tend = pi and y0 = [1;1;1;1] using the
% transition matrix K
t0 = 0;
tf = pi ;
N = 20;
ts = (tf - t0) / N;
T = linspace(t0, tf, N+1);
K = subs(K,dt,ts);
Knum = double(subs(K,t,0));
for i = 1:N-1
Knum = double(subs(K,t,i*ts))*Knum;
end
y_at_pi_with_transition_matrix = Knum*[1;1;1;1]
y_at_pi_with_transition_matrix = 4×1
9.754957068626140 2.363232167775414 -0.641295161941964 -2.287853242583158
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
% Compute eigenvalues
eig(Knum)
ans =
3.282252311329557 + 1.080784504109312i 3.282252311329557 - 1.080784504109312i -1.030044815844306 + 0.000000000000000i -0.039890272044380 + 0.000000000000000i
% Compute numerical solution for tend = pi and y0 = [1;1;1;1] with ode45 to check the
% result with transition matrix
fun = @(t,y)double(A(t))*y;
y0 = [1;1;1;1];
[T,Y] = ode45(fun,[0 pi],y0);
y_at_pi_with_ode45 = Y(end,:).'
y_at_pi_with_ode45 = 4×1
9.755085521136586 2.363155160915888 -0.641612321978496 -2.288142249726387
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
  4 Comments
Walter Roberson
Walter Roberson ongeveer 24 uur ago
equationsToMatrix is part of the Symbolic Toolbox, which you must have or else
syms y [4 1]
would not work.
In particular, we could consider the possibility that you have access to syms because you (hypothetically) have Maple installed -- but the Maple version of syms does not support the [4 1] notation.
Torsten
Torsten ongeveer 23 uur ago
Edited: Torsten ongeveer 22 uur ago
Code from @Nikoo never used symbolic computations ...
format long
t0 = 0;
tf = pi ;
N = 20;
dt = (tf - t0) / N;
T = linspace(t0, tf, N+1);
Kmat = K(0,dt);
for i = 1:N-1
Kmat = K(i*dt,dt)*Kmat;
end
y_at_pi_with_transition_matrix = Kmat*[1;1;1;1]
y_at_pi_with_transition_matrix = 4×1
9.754957068626140 2.363232167775413 -0.641295161941960 -2.287853242583156
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
% Compute eigenvalues
eig(Kmat)
ans =
3.282252311329557 + 1.080784504109311i 3.282252311329557 - 1.080784504109311i -1.030044815844306 + 0.000000000000000i -0.039890272044380 + 0.000000000000000i
function Mat_K = K(t,dt)
n = 4;
At = A(t);
Atpdth = A(t+dt/2);
Atpdt = A(t+dt);
E = Atpdth*(eye(n)+dt/2*At);
F = Atpdth*(eye(n)+(-1/2+1/sqrt(2))*dt*At+(1-1/sqrt(2))*dt*E);
G = Atpdt*(eye(n)-dt/sqrt(2)*E+(1+1/sqrt(2))*dt*F);
K = eye(n)+dt/6*(At+2*(1-1/sqrt(2))*E+2*(1+1/sqrt(2))*F+G);
Mat_K = K;
end
function Mat_A = A(t)
ct = cos(2*t);
st = sin(2*t);
% Define inertia matrix [M]
M11 = 3 + 1 + ct;
M12 = -st;
M21 = -st;
M22 = 3 + 1 - ct;
M = [M11 M12;M21 M22];
% Define damping matrix [D]
D11 = (1 - ct) - (1 + ct) - 2 * st;
D12 = st + 0.4*st - 2*(1 + ct) - 2*ct;
D21 = st + 0.4*st + 2*(1 - ct) - 2*ct;
D22 = (1 + ct) - (1 - ct) + 2 * st;
D = [D11 D12; D21 D22];
% Define stiffness matrix [K]
K11 = - (1 - ct) + st;
K12 = -st + 0.5*(1 + ct);
K21 = -st - 0.5*(1 - ct);
K22 = - (1 + ct) - st;
K = [K11 K12; K21 K22];
% Compute the terms -M \ K and -M \ C
MK =-M \K; % Solves M * y = K for y
MD =-M \D; % Solves M * y = D for y
% Compute A(t)
A = [ 0, 1, 0, 0;
MK(1,1), MD(1,1), MK(1,2), MD(1,2);
0, 0, 0, 1;
MK(2,1), MD(2,1), MK(2,2), MD(2,2)];
Mat_A = A;
end

Sign in to comment.

Categories

Find more on Programming in Help Center and File Exchange

Tags

Products


Release

R2023a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!