anyone correct the below code for solving energy, vorticity eqn using the alternative direct implicit fdm method for which i should get the values of velocitiy at each grid i

10 views (last 30 days)
% MATLAB code to solve the coupled temperature and vorticity equations using ADI FDM
% Parameters
Pr = 0.733; % Prandtl number
A = 1; % Length of the domain in X direction
Ha = 10; % Hartmann number (can change this to study its influence)
Gr = 2e4; % Grashof number
Nx = 41; % Number of grid points in X direction
Ny = 41; % Number of grid points in Y direction
dx = A/(Nx-1); % Grid spacing in X
dy = 1/(Ny-1); % Grid spacing in Y
dt = 0.001; % Time step size
max_iter = 1000; % Maximum iterations for time-stepping
% Initialize arrays
T = rand(Nx, Ny); % Temperature field
zeta = rand(Nx, Ny); % Vorticity field
Psi = rand(Nx, Ny); % Stream function
U = rand(Nx, Ny); % X-component of velocity
V = rand(Nx, Ny); % Y-component of velocity
% Boundary conditions for Psi and T
T(:,1) = -1; % At Y = 0, T = -1
T(:,end) = 1; % At Y = 1, T = 1
Psi(:,1) = 0; Psi(:,end) = 0; % Stream function at Y boundaries
Psi(1,:) = 0; Psi(end,:) = 0; % Stream function at X boundaries
% Time-stepping loop
for iter = 1:max_iter
% Compute velocities U and V from stream function Psi
for i = 2:Nx-1
for j = 2:Ny-1
U(i,j) = (Psi(i,j+1) - Psi(i,j-1))/(2*dy); % U = dPsi/dY
V(i,j) = -(Psi(i+1,j) - Psi(i-1,j))/(2*dx); % V = -dPsi/dX
end
end
% Solve for temperature T using ADI method (X-direction first)
for j = 2:Ny-1
for i = 2:Nx-1
T(i,j) = T(i,j) + dt * ( ...
-(U(i,j) * (T(i+1,j) - T(i-1,j))/(2*dx)) - ... % Advection term (X)
(V(i,j) * (T(i,j+1) - T(i,j-1))/(2*dy)) + ... % Advection term (Y)
(1/Pr) * ((T(i+1,j) - 2*T(i,j) + T(i-1,j))/(dx^2) + ... % Diffusion (X)
(T(i,j+1) - 2*T(i,j) + T(i,j-1))/(dy^2)) ); % Diffusion (Y)
end
end
% Solve for vorticity zeta using ADI method (Y-direction next)
for j = 2:Ny-1
for i = 2:Nx-1
zeta(i,j) = zeta(i,j) + dt * ( ...
-(U(i,j) * (zeta(i+1,j) - zeta(i-1,j))/(2*dx)) - ... % Advection (X)
(V(i,j) * (zeta(i,j+1) - zeta(i,j-1))/(2*dy)) + ... % Advection (Y)
(Gr/2) * (T(i,j+1) - T(i,j))/(dy) + ... % Buoyancy effect
((zeta(i+1,j) - 2*zeta(i,j) + zeta(i-1,j))/(dx^2) + ... % Diffusion (X)
(zeta(i,j+1) - 2*zeta(i,j) + zeta(i,j-1))/(dy^2)) - ... % Diffusion (Y)
Ha^2 * (V(i+1,j) - V(i-1,j))/(2*dx) ); % Hartmann term
end
end
% Enforce boundary conditions on Psi
Psi(:,1) = 0; Psi(:,end) = 0; % At Y boundaries
Psi(1,:) = 0; Psi(end,:) = 0; % At X boundaries
% Enforce boundary conditions on T
T(:,1) = -1; % At Y = 0
T(:,end) = 1; % At Y = 1
T(1,:) = T(2,:); % Neumann BC at X = 0
T(end,:) = T(end-1,:); % Neumann BC at X = A
% Optional: Display or store the solution at certain intervals
if mod(iter, 100) == 0
fprintf('Iteration %d\n', iter);
end
end
Iteration 100 Iteration 200 Iteration 300 Iteration 400 Iteration 500 Iteration 600 Iteration 700 Iteration 800 Iteration 900 Iteration 1000
% Final solution display - Single graph with subplots for T and Psi
figure;
subplot(1,2,1);
contourf(linspace(0,A,Nx), linspace(0,1,Ny), T', 20); colorbar;
title('Temperature Distribution T');
xlabel('X'); ylabel('Y');
subplot(1,2,2);
streamslice(linspace(0,A,Nx), linspace(0,1,Ny), U', V'); % Plot streamlines for velocity
title('Streamlines - Fluid Flow');
xlabel('X'); ylabel('Y');

Answers (0)

Categories

Find more on Fluid Dynamics in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!