rand function is slow with a parfor loop
2 views (last 30 days)
Show older comments
I'm trying to multithread a stochastic simulation using the parallel computing toolbox. I've profiled the program extensively to ensure that it is optimized. However, when I'm using PCT with 4 local workers, I find that the rand function consumes an inordinate amount of computational time far beyond what it uses in a single threaded program. Here is a representation of the code in question.
if(~(rand <= Pr))
I am stumped as to why this would be 10-15x slower than the single threaded case, unless rand is a synchronized function. I'm using a MacPro with 16 GB RAM and 2 quad core processors (MATLAB R2008b) for reference.
0 Comments
Answers (3)
Alex
on 18 Nov 2011
All computer based random number generators need a 'seed'. I don't know about Matlab, but this seed, if not provided directly by the user, is based off of the current system time. (by using the same 'seed', you can then get repeatable results, even in a 'random' environment).
I think, 2008b does not have the updated random generator methods.
http://www.mathworks.com/help/techdoc/math/bsn94u0-1.html This link talks about some of the older changes that have been made to the rand function.
0 Comments
Walter Roberson
on 18 Nov 2011
2008b does have the updated random number generator methods.
MATLAB uses a constant seed for each session, but a different seed for each parallel worker. This is described more in Peter Perkin's posting at http://www.mathworks.com/matlabcentral/newsreader/view_thread/299841
0 Comments
James
on 18 Nov 2011
1 Comment
Konrad Malkowski
on 30 Nov 2011
James could you provide a more complete example that reproduces the issue?
See Also
Categories
Find more on Parallel for-Loops (parfor) in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!