I face a problem with the dimensions of Z as it should be a 2x2 matrix.

2 views (last 30 days)
%------Creating a strain matrix-----------%
E = zeros(2*(size(K1,1)-1),2*(size(K1,1)-1));
for j = 1: (size(K1,1)-1)
for i = 1: (size(K1,1)-1)
v = [zpk1(j,i);zpk2(j,i);zpk1(j,i+1);zpk2(j,i+1);zpk1(j+1,i+1);zpk2(j+1,i+1);zpk1(j+1,i);zpk2(j+1,i)];
e1= strain1(v);
e2= strain2(v);
e3= strain3(v);
e4= strain4(v);
E((2*j-1),(2*i-1)) = e1(1);
E((2*j-1),2*i) = e2(1);
E(2*j,(2*i-1)) = e4(1);
E(2*j,2*i) = e3(1);
end
end
su = round(4*d/g)+1;
r = E((((su-1)- round(d/g)):-1:1),(su-1));
p = E((((su-1)- round(d/g)):-1:1),(su));
st = (p+r)./(1.5*(10)^(-4));
m = g*(size(r)-1);
H = 0:g:(m);
h = H./10;
writematrix(st)
type 'st.txt'
writematrix(h)
type 'h.txt'
plot(h,st)
xlim([0 1.5])
xlabel("X2/d",'fontsize',14)
ylabel("Normalised Strain along vertical path", 'fontsize',13)
legend("d/w = 0.5")
saveas(gcf,'plot.png')
contourf(st)
colorbar
saveas(gcf,'contour.png')
The final plot of the above code should resemble something like this:
I have double chekced, the formula is correct and the value of st at a given r and p match with the experimental results. However, I face a problem with the dimensions of Z as it should be a 2x2 matrix.
Thank you in advance.
  3 Comments
Mohd Babar
Mohd Babar on 30 Jul 2024
Edited: Walter Roberson on 30 Jul 2024
clc;
clear all;
%-----Geometry, Number of simulations------%
d = 10;
N = 1;
a11 = 250 * (d / 10);
a12 = 100 * (d / 10);
%-----Mesh grid boundary definition--------%
xms = a11 / 2 - 2 * d;
xmf = a11 / 2 + 2 * d;
yms = a12 / 2 - 2 * d;
ymf = a12 / 2 + 2 * d;
%----------------Grid size----------------%
g = 0.085;
xq1 = xms:g:xmf;
xq = xq1';
yq1 = yms:g:ymf;
yq = yq1';
%-----Mesh grid around the hole----------%
[K1, K2] = meshgrid(xq, yq);
a = size(xq1, 2);
b = size(yq1, 2);
for k = 1:b
for j = 1:a
e = ((k * g) - 2 * d)^2 + ((j * g) - 2 * d)^2 - (0.5 * d)^2;
if e < 0
K1(j, k) = NaN;
K2(j, k) = NaN;
end
end
end
zz1 = 0;
zz2 = 0;
%----Importing files from Abaqus---------%
for i = 1:N
fx = ['d:/babar/Abaqus/S2000/aax' num2str(i) '.txt'];
fy = ['d:/babar/Abaqus/S2000/aay' num2str(i) '.txt'];
fu = ['d:/babar/Abaqus/S2000/aau1' num2str(i) '.txt'];
fv = ['d:/babar/Abaqus/S2000/aau2' num2str(i) '.txt'];
x = textfile(fx);
y = textfile(fy);
z1 = textfile(fu);
z2 = textfile(fv);
U1 = griddata(x, y, z1, K1, K2);
U2 = griddata(x, y, z2, K1, K2);
zz1 = U1 + zz1;
zz2 = U2 + zz2;
end
%--------Averaging the displacements-------%
zpk1 = zz1 / N;
zpk2 = zz2 / N;
xlswrite('zpk1.xlsx', zpk1)
xlswrite('zpk2.xlsx', zpk2)
%------Creating a strain matrix-----------%
E = zeros(2 * (size(K1, 1) - 1), 2 * (size(K1, 1) - 1));
for j = 1:(size(K1, 1) - 1)
for i = 1:(size(K1, 1) - 1)
v = [zpk1(j, i); zpk2(j, i); zpk1(j, i + 1); zpk2(j, i + 1); zpk1(j + 1, i + 1); zpk2(j + 1, i + 1); zpk1(j + 1, i); zpk2(j + 1, i)];
e1 = strain1(v);
e2 = strain2(v);
e3 = strain3(v);
e4 = strain4(v);
E((2 * j - 1), (2 * i - 1)) = e1(1);
E((2 * j - 1), 2 * i) = e2(1);
E(2 * j, (2 * i - 1)) = e4(1);
E(2 * j, 2 * i) = e3(1);
end
end
su = round(4 * d / g) + 1;
r = E((((su - 1) - round(d / g)):-1:1), (su - 1));
p = E((((su - 1) - round(d / g)):-1:1), su);
st = (p + r) / (1.5 * 10^(-4));
m = g * (size(r, 1) - 1);
H = 0:g:m;
h = H / 10;
writematrix(st, 'st.txt')
writematrix(h, 'h.txt')
figure;
plot(h, st)
xlim([0 1.5])
xlabel("X2/d", 'fontsize', 14)
ylabel("Normalized Strain along vertical path", 'fontsize', 13)
legend("d/w = 0.5")
saveas(gcf, 'plot.png')
figure;
contourf(st)
colorbar
saveas(gcf, 'contour.png')
function E1 = strain1(v)
B1 = [1 0 0 0; 0 0 0 1; 0 1 1 0];
x1 = -1 / sqrt(3); eta1 = -1 / sqrt(3);
B21 = B2();
B31 = B3(x1, eta1);
B12 = B1 * B21;
B = B12 * B31;
E1 = B * v;
end
function E1 = strain2(v)
B1 = [1 0 0 0; 0 0 0 1; 0 1 1 0];
x1 = 1 / sqrt(3); eta1 = -1 / sqrt(3);
B21 = B2();
B31 = B3(x1, eta1);
B12 = B1 * B21;
B = B12 * B31;
E1 = B * v;
end
function E1 = strain3(v)
B1 = [1 0 0 0; 0 0 0 1; 0 1 1 0];
x1 = 1 / sqrt(3); eta1 = 1 / sqrt(3);
B21 = B2();
B31 = B3(x1, eta1);
B12 = B1 * B21;
B = B12 * B31;
E1 = B * v;
end
function E1 = strain4(v)
B1 = [1 0 0 0; 0 0 0 1; 0 1 1 0];
x1 = -1 / sqrt(3); eta1 = 1 / sqrt(3);
B21 = B2();
B31 = B3(x1, eta1);
B12 = B1 * B21;
B = B12 * B31;
E1 = B * v;
end
function B21 = B2()
B21 = [0.05 / 0.0025 0 0 0; 0 0.05 / 0.0025 0 0; 0 0 0.05 / 0.0025 0; 0 0 0 0.05 / 0.0025];
end
function B31 = B3(x1, eta1)
B31 = [...
-(1 - eta1) * 0.25 0 (1 - eta1) * 0.25 0 (1 + eta1) * 0.25 0 -(1 + eta1) * 0.25 0; ...
-(1 - x1) * 0.25 0 -(1 + x1) * 0.25 0 (1 + x1) * 0.25 0 (1 - x1) * 0.25 0; ...
0 -(1 - eta1) * 0.25 0 (1 - eta1) * 0.25 0 (1 + eta1) * 0.25 0 -(1 + eta1) * 0.25; ...
0 -(1 - x1) * 0.25 0 -(1 + x1) * 0.25 0 (1 + x1) * 0.25 0 (1 - x1) * 0.25];
end
function value = textfile(filename)
fileID = fopen(filename, 'r');
if fileID == -1
error('Failed to open file: %s', filename);
end
value = fscanf(fileID, '%f');
fclose(fileID);
end
%"These are the extract data from abaqus and
su = round(4 * d / g) + 1;
r = E((((su - 1) - round(d / g)):-1:1), (su - 1));
p = E((((su - 1) - round(d / g)):-1:1), su);
[r, p] = meshgrid(r,p);
st = (p + r) / (1.5 * 10^(-4));
m = g * (size(r, 1) - 1);
H = 0:g:m;
h = H / 10;
i have tried with meshgrid option, after using meshgrid i rid of the error but results are not correct."
Thanks in advance

Sign in to comment.

Answers (1)

Walter Roberson
Walter Roberson on 30 Jul 2024
d = 10;
g = 0.085;
d and g are scalars
su = round(4 * d / g) + 1;
su is formed from scalar d and g, so su is scalar
r = E((((su - 1) - round(d / g)):-1:1), (su - 1));
p = E((((su - 1) - round(d / g)):-1:1), su);
su-1 and su are scalars, so you are extracting exactly one column from E into r and p, so r and p are vectors (not 2D)
st = (p + r) / (1.5 * 10^(-4));
vector plus vector (in the same direction) is vector, so st is a vector.
contourf(st)
You are trying to contourf() a vector.
  5 Comments
Walter Roberson
Walter Roberson on 30 Jul 2024
Edited: Walter Roberson on 30 Jul 2024
Using meshgrid like that is not going to work. You have
st = (p + r) / (1.5 * 10^(-4));
and making p and r into grids cannot possibly give you the kind of curved output that you hope for.
clc;
clear all;
%-----Geometry, Number of simulations------%
d = 10;
N = 1;
a11 = 250 * (d / 10);
a12 = 100 * (d / 10);
%-----Mesh grid boundary definition--------%
xms = a11 / 2 - 2 * d;
xmf = a11 / 2 + 2 * d;
yms = a12 / 2 - 2 * d;
ymf = a12 / 2 + 2 * d;
%----------------Grid size----------------%
g = 0.085;
xq1 = xms:g:xmf;
xq = xq1';
yq1 = yms:g:ymf;
yq = yq1';
%-----Mesh grid around the hole----------%
[K1, K2] = meshgrid(xq, yq);
a = size(xq1, 2);
b = size(yq1, 2);
for k = 1:b
for j = 1:a
e = ((k * g) - 2 * d)^2 + ((j * g) - 2 * d)^2 - (0.5 * d)^2;
if e < 0
K1(j, k) = NaN;
K2(j, k) = NaN;
end
end
end
zz1 = 0;
zz2 = 0;
%----Importing files from Abaqus---------%
for i = 1:N
fx = ['aax' num2str(i) '.txt'];
fy = ['aay' num2str(i) '.txt'];
fu = ['aau1' num2str(i) '.txt'];
fv = ['aau2' num2str(i) '.txt'];
x = textfile(fx);
y = textfile(fy);
z1 = textfile(fu);
z2 = textfile(fv);
U1 = griddata(x, y, z1, K1, K2);
U2 = griddata(x, y, z2, K1, K2);
zz1 = U1 + zz1;
zz2 = U2 + zz2;
end
%--------Averaging the displacements-------%
zpk1 = zz1 / N;
zpk2 = zz2 / N;
xlswrite('zpk1.xlsx', zpk1)
Warning: Unable to write to Excel format, attempting to write file to CSV format.
xlswrite('zpk2.xlsx', zpk2)
Warning: Unable to write to Excel format, attempting to write file to CSV format.
%------Creating a strain matrix-----------%
E = zeros(2 * (size(K1, 1) - 1), 2 * (size(K1, 1) - 1));
for j = 1:(size(K1, 1) - 1)
for i = 1:(size(K1, 1) - 1)
v = [zpk1(j, i); zpk2(j, i); zpk1(j, i + 1); zpk2(j, i + 1); zpk1(j + 1, i + 1); zpk2(j + 1, i + 1); zpk1(j + 1, i); zpk2(j + 1, i)];
e1 = strain1(v);
e2 = strain2(v);
e3 = strain3(v);
e4 = strain4(v);
E((2 * j - 1), (2 * i - 1)) = e1(1);
E((2 * j - 1), 2 * i) = e2(1);
E(2 * j, (2 * i - 1)) = e4(1);
E(2 * j, 2 * i) = e3(1);
end
end
su = round(4 * d / g) + 1;
r = E((((su - 1) - round(d / g)):-1:1), (su - 1));
p = E((((su - 1) - round(d / g)):-1:1), su);
[r, p] = meshgrid(r,p);
st = (p + r) / (1.5 * 10^(-4));
m = g * (size(r, 1) - 1);
H = 0:g:m;
h = H / 10;
writematrix(st, 'st.txt')
writematrix(h, 'h.txt')
figure;
plot(h, st)
xlim([0 1.5])
xlabel("X2/d", 'fontsize', 14)
ylabel("Normalized Strain along vertical path", 'fontsize', 13)
legend("d/w = 0.5")
saveas(gcf, 'plot.png')
figure;
contourf(st)
colorbar
saveas(gcf, 'contour.png')
function E1 = strain1(v)
B1 = [1 0 0 0; 0 0 0 1; 0 1 1 0];
x1 = -1 / sqrt(3); eta1 = -1 / sqrt(3);
B21 = B2();
B31 = B3(x1, eta1);
B12 = B1 * B21;
B = B12 * B31;
E1 = B * v;
end
function E1 = strain2(v)
B1 = [1 0 0 0; 0 0 0 1; 0 1 1 0];
x1 = 1 / sqrt(3); eta1 = -1 / sqrt(3);
B21 = B2();
B31 = B3(x1, eta1);
B12 = B1 * B21;
B = B12 * B31;
E1 = B * v;
end
function E1 = strain3(v)
B1 = [1 0 0 0; 0 0 0 1; 0 1 1 0];
x1 = 1 / sqrt(3); eta1 = 1 / sqrt(3);
B21 = B2();
B31 = B3(x1, eta1);
B12 = B1 * B21;
B = B12 * B31;
E1 = B * v;
end
function E1 = strain4(v)
B1 = [1 0 0 0; 0 0 0 1; 0 1 1 0];
x1 = -1 / sqrt(3); eta1 = 1 / sqrt(3);
B21 = B2();
B31 = B3(x1, eta1);
B12 = B1 * B21;
B = B12 * B31;
E1 = B * v;
end
function B21 = B2()
B21 = [0.05 / 0.0025 0 0 0; 0 0.05 / 0.0025 0 0; 0 0 0.05 / 0.0025 0; 0 0 0 0.05 / 0.0025];
end
function B31 = B3(x1, eta1)
B31 = [...
-(1 - eta1) * 0.25 0 (1 - eta1) * 0.25 0 (1 + eta1) * 0.25 0 -(1 + eta1) * 0.25 0; ...
-(1 - x1) * 0.25 0 -(1 + x1) * 0.25 0 (1 + x1) * 0.25 0 (1 - x1) * 0.25 0; ...
0 -(1 - eta1) * 0.25 0 (1 - eta1) * 0.25 0 (1 + eta1) * 0.25 0 -(1 + eta1) * 0.25; ...
0 -(1 - x1) * 0.25 0 -(1 + x1) * 0.25 0 (1 + x1) * 0.25 0 (1 - x1) * 0.25];
end
function value = textfile(filename)
fileID = fopen(filename, 'r');
if fileID == -1
error('Failed to open file: %s', filename);
end
value = fscanf(fileID, '%f');
fclose(fileID);
end
Walter Roberson
Walter Roberson on 30 Jul 2024
Maybe you want to use r and p and some other variable as x, y, z vectors together with scatteredInterpolant() or gridddata()

Sign in to comment.

Categories

Find more on MATLAB in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!