funzione non lineare, 3 incognite in tre equazioni. Ho bisogno di soluzioni delle incognite solo poitive
4 views (last 30 days)
Show older comments
Ciao, ho il seguente sistema di 3 equazioni in 3 incognite da risolvere con la funzione fsolve
function F = systemNL(V)
k1=0.7;
k2=0.8;
F(1) = V(1) - R * ((Iscr * G1 / Gref + ki * (T - Tr) + Irr * (exp(q * vvv(2) / (kb * A)) - 1)) * (1 - k1) + (Iscr * G2 / Gref + ki * (T - Tr) + Irr * (exp(q * vvv(3) / (kb * A)) - 1)) * (1 - k2));
F(2) = V(2) - V(1) * (1 - k1);
F(3) = V(3) - V(1) * (1 - k2);
end
Problema:
Come faccio a trovare una terna di inizializzazione positiva(V0) che mi renda una soluzione fattibile con V1, V2 ed V3 numeri positivi?
0 Comments
Answers (1)
Divyam
on 12 Jul 2024
Hi Michele,
In this situation, the code seems to be interacting with physical systems, generally [0,0,0] is good initial guess. However, a multi-start approach can be applied to the "fsolve" function to get more solutions which can be excluded analytically.
To obtain a feasible solution, the "initial guess" should be a good starting point. However, there is no numerical way to get such starting points.
Further illustrating my point, consider the simple nonlinear equation, , using "fsolve" on this equation leads to the following results with initial guesses, [0, 1, 5].
% Setting fsolve display to off to remove iterations being printed out
options = optimoptions('fsolve','Display','off');
% Declaring (x-1)^2
function f = func(x)
f = x^2 - 2*x + 1;
end
% Storing initial guesses in an array
multiStart = [0,1,5];
% Iterating through each initial guess and using fsolve for them
for idx = 1:numel(multiStart)
sol = fsolve(@func, multiStart(idx), options);
fprintf("The solution for initial guess %d is: %.5f\n", multiStart(idx), sol)
end
If the dimensions of the same function are increased, the impact of the initial guess increases too, as observed in the case of
% Declaring (x-1)^20
function f = funcHigher(x)
f = x^20 - 20*x^19 + 190*x^18 - 1140*x^17 + 4845*x^16 - 15504*x^15 + 38760*x^14 ...
- 77520*x^13 + 125970*x^12 - 167960*x^11 + 184756*x^10 - 167960*x^9 + 125970*x^8 ...
- 77520*x^7 + 38760*x^6 - 15504*x^5 + 4845*x^4 - 1140*x^3 + 190*x^2 - 20*x + 1;
end
% Iterating through each initial guess and using fsolve for them
for idx = 1:numel(multiStart)
sol = fsolve(@funcHigher, multiStart(idx), options);
fprintf("The solution for initial guess %d is: %.5f\n", multiStart(idx), sol)
end
Upon running this code, the significantly off garbage floating point values can be observed on a seemingly "wrong" initial guess. The initial guess for the "right" answer was determined analytically since its evident that 1 is a root of .
The point stands, there is no right or wrong initial guess if the "fsolve" converges. There are merely more correct initial guesses which are determined by eliminating solutions or guessing values analytically.
0 Comments
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!