Multiple Regression and Intercept
4 views (last 30 days)
Show older comments
% Load the data from the Excel file
data = readtable('데이터(최종).xlsx', 'Sheet', 'Sheet5');
% Define the dependent variable
y = data.Arrive;
% Define the independent variables
X = [data.Price_m, data.Volme, data.Relative_y, data.Relative_m, ...
data.mine, data.debt, data.Quin, data.Cpi, data.Rate, data.Depo, ...
data.Bull, data.Sale, data.Move, data.Sub];
% Add a column of ones to the independent variables matrix for the intercept
X = [ones(size(X, 1), 1), X];
% Perform the multiple linear regression
[b, ~, ~, ~, stats] = regress(y, X);
% Display the results
disp('Regression Coefficients:');
disp(b);
disp('R-squared:');
disp(stats(1));
disp('F-statistic:');
disp(stats(2));
disp('p-value:');
disp(stats(3));
disp('Error Variance:');
disp(stats(4));
I'm going to proceed with a multilinear regression analysis with the data string called Arrive as the dependent variable, and the result is as follows. Is it ok...?
disp(stats(4));
Regression Coefficients:
1.0e+06 *
4.1453
-0.0190
0.0040
-0.0960
-0.6115
-0.0022
-0.0140
0.0259
0.0070
-0.0602
-0.0196
-0.0003
-0.0000
0.0000
0.0000
R-squared:
0.3997
F-statistic:
4.5189
p-value:
3.5809e-06
Error Variance:
3.8687e+09
0 Comments
Answers (1)
Star Strider
on 25 May 2024
I see nothing wrong with the code, and it conforms to the example in the regress documentation.
The only suggestion I have is to use table indexing to replace the initial ‘X’ so —
data = readtable('데이터(최종).xlsx', 'Sheet', 'Sheet5')
% Define the dependent variable
y = data.Arrive;
% Add a column of ones to the independent variables matrix for the intercept, Add a column of ones to the independent variables matrix for the intercept
X = [ones(size(data{:,1})) data{:,3:end}];
% Perform the multiple linear regression
[b, ~, ~, ~, stats] = regress(y, X);
% Display the results
disp('Regression Coefficients:');
disp(b);
disp('R-squared:');
disp(stats(1));
disp('F-statistic:');
disp(stats(2));
disp('p-value:');
disp(stats(3));
disp('Error Variance:');
disp(stats(4));
This is slightly more efficient code, and the result is the same.
.
2 Comments
Star Strider
on 27 May 2024
There is a problem with statistical significance, because only four variables (including the Intercept term) are statistically significant, in the usual sense of having . I used fitlm to get those statistics —
data = readtable('데이터(최종).xlsx', 'Sheet', 'Sheet5')
% Define the dependent variable
y = data.Arrive;
% Add a column of ones to the independent variables matrix for the intercept, Add a column of ones to the independent variables matrix for the intercept
X = [ones(size(data{:,1})) data{:,3:end}];
% Perform the multiple linear regression
[b, ~, ~, ~, stats] = regress(y, X);
% Display the results
disp('Regression Coefficients:');
disp(b);
disp('R-squared:');
disp(stats(1));
disp('F-statistic:');
disp(stats(2));
disp('p-value:');
disp(stats(3));
disp('Error Variance:');
disp(stats(4));
VN = data.Properties.VariableNames;
mdl = fitlm(data{:,3:end}, data.Arrive, 'VarNames',{VN{3:end},VN{2}})
Significant_Independent_Variables = mdl.CoefficientNames(mdl.Coefficients.pValue <= 0.05)
However considering the F-statistic, the regression itself is highly significant.
These are your data. I defer to you to interprret them and the regression results. (I am not even certain what the variables are.)
.
See Also
Categories
Find more on Linear and Nonlinear Regression in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!