How to solve SIR model with using DTM (Differential Transform Method)
11 views (last 30 days)
Show older comments
I am trying to use dtm for solving SIR model, Although my code is run but I think the DTM part is wrong. I need help for DTM part
here is my code
function sir_model_dtm()
% Parameters
alpha = 0.3; % Infection rate
beta = 0.1; % Recovery rate
N = 1000; % Total population
I0 = 1; % Initial number of infected individuals
R0 = 0; % Initial number of recovered individuals
S0 = N - I0 - R0; % Initial number of susceptible individuals
% Time parameters
T = 100; % Total simulation time
dt = 1; % Time step
% Initialize arrays to store results
S = zeros(1, T);
I = zeros(1, T);
R = zeros(1, T);
% Initial conditions
S(1) = S0;
I(1) = I0;
R(1) = R0;
% Simulate the SIR model using DTM
for t = 2:T
% Compute new values
S(t) = S(t-1) - alpha*S(t-1)*I(t-1)/N * dt;
I(t) = I(t-1) + (alpha*S(t-1)*I(t-1)/N - beta*I(t-1)) * dt;
R(t) = R(t-1) + beta*I(t-1) * dt;
end
% Plot the results
t = 0:dt:T-dt;
plot(t, S, 'b', t, I, 'r', t, R, 'g', 'LineWidth', 2);
legend('Susceptible', 'Infectious', 'Recovered');
xlabel('Time');
ylabel('Number of individuals');
title('SIR Model');
end
2 Comments
Sam Chak
on 17 Apr 2024
Providing the mathematical formulas for Differential Transform Method would be helpful, as it saves users from having to search for it online.
Answers (1)
Athanasios Paraskevopoulos
on 16 May 2024
function sir_model_dtm()
% Parameters
alpha = 0.3; % Infection rate
beta = 0.1; % Recovery rate
N = 1000; % Total population
I0 = 1; % Initial number of infected individuals
R0 = 0; % Initial number of recovered individuals
S0 = N - I0 - R0; % Initial number of susceptible individuals
% Time parameters
T = 100; % Total simulation time
dt = 1; % Time step
% Initialize arrays to store results
S = zeros(1, T);
I = zeros(1, T);
R = zeros(1, T);
% Initial conditions
S(1) = S0;
I(1) = I0;
R(1) = R0;
% Simulate the SIR model using DTM
for t = 2:T
% Current values
S_curr = S(t-1);
I_curr = I(t-1);
R_curr = R(t-1);
% Compute intermediate values using DTM (predictor step)
S_inter = S_curr - alpha * S_curr * I_curr / N * dt;
I_inter = I_curr + (alpha * S_curr * I_curr / N - beta * I_curr) * dt;
R_inter = R_curr + beta * I_curr * dt;
% Compute new values (corrector step)
S(t) = S_curr - 0.5 * dt * (alpha * S_curr * I_curr / N + alpha * S_inter * I_inter / N);
I(t) = I_curr + 0.5 * dt * ((alpha * S_curr * I_curr / N - beta * I_curr) + (alpha * S_inter * I_inter / N - beta * I_inter));
R(t) = R_curr + 0.5 * dt * (beta * I_curr + beta * I_inter);
end
% Plot the results
t = 0:dt:T-dt;
plot(t, S, 'b', t, I, 'r', t, R, 'g', 'LineWidth', 2);
legend('Susceptible', 'Infectious', 'Recovered');
xlabel('Time');
ylabel('Number of individuals');
title('SIR Model');
end
0 Comments
See Also
Categories
Find more on Optimization Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!