warning all the time, don't know what is wrong

2 views (last 30 days)
syms m n p a x y z lambda real
g = x + y + z -a;
L = (x).^m.*(y).^n.*(z).^p - lambda.*g
L = 
Lx = diff(L,x)
Lx = 
Ly = diff(L,y)
Ly = 
Lz = diff(L,z)
Lz = 
sol = solve([Lx==0,Ly==0,Lz==0,g==0],[x y z lambda])
Warning: Unable to find explicit solution. For options, see help.
sol = struct with fields:
x: [0x1 sym] y: [0x1 sym] z: [0x1 sym] lambda: [0x1 sym]
sol.x
ans = Empty sym: 0-by-1
sol.y
ans = Empty sym: 0-by-1
sol.z
ans = Empty sym: 0-by-1

Answers (1)

Walter Roberson
Walter Roberson on 22 Mar 2024
Moved: Walter Roberson on 22 Mar 2024
The 0^n and 0^(m-1) occur because there are not constraints on m and n, so there is the possibility that 0^0 is being generated, and 0^0 is 1 whereas 0^anything_else is 0
syms m n p a x y z lambda real
g = x + y + z -a;
L = (x).^m.*(y).^n.*(z).^p - lambda.*g;
Lx = diff(L,x);
Ly = diff(L,y);
Lz = diff(L,z);
eqns = [Lx==0,Ly==0,Lz==0,g==0];
partial_lambda = solve(eqns(1), lambda, 'returnconditions', true);
%partial_lambda.conditions
eqns2 = subs(eqns(2:end), lambda, partial_lambda.lambda);
partial_x = solve(eqns2(3), x);
eqns3 = subs(eqns2([1:2 4:end]), x, partial_x);
partial_y = solve(eqns3(1), y, 'returnconditions', true);
%partial_y.y
%partial_y.conditions
eqns4 = subs(eqns3(2:end), y, partial_y.y);
syms parameter1 parameter2 real
partial_z1 = subs(solve(eqns4(1,1), z, 'returnconditions', true), sym('x'), parameter1);
partial_z2 = subs(solve(eqns4(2,1), z, 'returnconditions', true), sym('x'), parameter2);
partial_z3 = solve(eqns4(3,1), z, 'returnconditions', true);
%partial_z3.z
%partial_z3.conditions
back_z1 = partial_z1.z;
back_y1 = subs(partial_y.y(1), z, back_z1);
back_x1 = subs(partial_x, {y, z}, {back_y1, back_z1});
back_lambda1 = subs(partial_lambda, {x, y, z}, {back_x1, back_y1, back_z1});
solution1 = [x == back_x1, y == back_y1, z == back_z1, lambda == back_lambda1.lambda]
solution1 = 
back_z2 = partial_z2.z;
back_y2 = subs(partial_y.y(2), z, back_z2);
back_x2 = subs(partial_x, {y, z}, {back_y2, back_z2});
back_lambda2 = subs(partial_lambda, {x, y, z}, {back_x2, back_y2, back_z2});
solution2 = [x == back_x2, y == back_y2, z == back_z2, lambda == back_lambda2.lambda]
solution2 = 
back_z3a = partial_z3.z(1);
back_y3a = subs(partial_y.y(3), z, back_z3a);
back_x3a = subs(partial_x, {y, z}, {back_y3a, back_z3a});
back_lambda3a = subs(partial_lambda, {x, y, z}, {back_x3a, back_y3a, back_z3a});
solution3a = [x == back_x3a, y == back_y3a, z == back_z3a, lambda == back_lambda3a.lambda]
solution3a = 
back_z3b = partial_z3.z(2);
back_y3b = subs(partial_y.y(3), z, back_z3b);
back_x3b = subs(partial_x, {y, z}, {back_y3b, back_z3b});
back_lambda3b = subs(partial_lambda, {x, y, z}, {back_x3b, back_y3b, back_z3b});
solution3b = [x == back_x3b, y == back_y3b, z == back_z3b, lambda == back_lambda3b.lambda]
solution3b = 
back_z3c = partial_z3.z(3);
back_y3c = subs(partial_y.y(3), z, back_z3c);
back_x3c = subs(partial_x, {y, z}, {back_y3c, back_z3c});
back_lambda3c = subs(partial_lambda, {x, y, z}, {back_x3c, back_y3c, back_z3c});
solution3c = [x == back_x3c, y == back_y3c, z == back_z3c, lambda == back_lambda3c.lambda]
solution3c = 
  5 Comments
Dyuman Joshi
Dyuman Joshi on 29 Mar 2024
Hello @Xiao yang, if this answer solved your problem, please consider accepting the answer.
Accepting the answer indicates that your problem has been solved (which can be helpful to other people in future) and it awards the volunteer with reputation points for helping you.
You can accept only 1 answer for a question, but you can vote for as many answers as you want. Voting an answer also provides reputation points.

Sign in to comment.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!