Create confusion matrix from LDA model
9 views (last 30 days)
Show older comments
It is easy to train an LDA model and find its accuracy by cross-validation as below:
Mdl = fitcdiscr(data, "Response_var_name", CrossVal="on");
validationAccuracy = 1 - kfoldLoss(Mdl, 'LossFun', 'ClassifError');
However, what is the easiest/best way to get the confusion matrix?
Thanks.
0 Comments
Accepted Answer
the cyclist
on 23 Feb 2024
The ClassificationDiscrimant class has a predict function. You can input the predicted and actual labels into the confusionchart function.
4 Comments
the cyclist
on 23 Feb 2024
Yes, I think that is sensible.
I have to admit, though, that I don't fully comprehend how kfoldPredict goes from this statement (from the documentation)
========================================================================
"For every fold, kfoldPredict predicts class labels for validation-fold observations using a classifier trained on training-fold observations."
========================================================================
-- to a single prediction for the model (as opposed to a prediction per fold, which is how I read that statement). It is presumably possible to use the debugger to step into the function and see exactly what it is doing, but I have not done that.
More Answers (0)
See Also
Categories
Find more on Discriminant Analysis in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!