help wtih plotting ode function

1 view (last 30 days)
Zlatan
Zlatan on 25 Jan 2024
Commented: Sam Chak on 25 Jan 2024
something is wrong, it plots empty result
all_units = 'all_units.xlsx';
maks = xlsread(all_units);
% Vehicle parameters
a = 1.024;
b = 1.602;
m = 1574.02;
cr = -25488;
cf = -184780;
I = 1790;
% Extract relevant columns from the data
v = maks(:, 24);
r = maks(:, 20);
u = maks(:,23);
t1 = maks(:, 25);
del = (maks(:, 18) + maks(:, 19)) / 2;
% Time span for the simulation
tspan = [min(t1), max(t1)];
% Initial condition
x0 = [0; 0]; % Initial values for v and r
% Solve the differential equation using ode45
[t, x] = ode45(@(t, x) myVehicleODE(t, x, t1, del), tspan, x0);
% Plot the results
figure;
subplot(2, 1, 1);
plot(t, x(:, 1), 'b', 'LineWidth', 2);
title('Longitudinal Velocity (v)');
xlabel('Time');
ylabel('Velocity');
subplot(2, 1, 2);
plot(t, x(:, 2), 'r', 'LineWidth', 2);
title('Yaw Rate (r)');
xlabel('Time');
ylabel('Yaw Rate');
% Define the function myVehicleODE at the end of the script
function dxdt = myVehicleODE(t, x, t1, del)
% Parameters
a = 1.024;
b = 1.602;
m = 1574.02;
cr = -25488;
cf = -184780;
I = 1790;
% Interpolate the input function 'del' with respect to time 't'
del_interpolated = interp1(t1, del, t, 'linear', 'extrap');
% System matrices
a11 = (-cf - cr) / (m * x(1));
a12 = (((-cf * a) + (cr * b)) / (m * x(1))) - x(1);
a21 = ((-cf * a) + (cr * b)) / (I * x(1));
a22 = ((-cf * a^2) - (cr * b^2)) / (I * x(1));
b1 = cf / m;
b2 = (cf * a) / I;
% State-space matrices A and B
A = [a11, a12;
a21, a22];
B = [b1;
b2];
% System of differential equations
dxdt = A * x + B * del_interpolated;
end

Answers (1)

Star Strider
Star Strider on 25 Jan 2024
There are two problems:
First, ‘x0’ is initially identically zero, and that creates an Inf result for the first value of ‘A’ and NaN for the rest, none of which will be plotted, so I added eps to ‘x0’.
Second, the system is ‘stiff’ so you need a ‘stiff’ solver, such as ode15s or ode23s (that I chose here, for no particular reason other than it being a stiff solver, either one would work here).
Then using both of those changes, it works —
all_units = 'all_units.xlsx';
maks = xlsread(all_units);
% Vehicle parameters
a = 1.024;
b = 1.602;
m = 1574.02;
cr = -25488;
cf = -184780;
I = 1790;
% Extract relevant columns from the data
v = maks(:, 24);
r = maks(:, 20);
u = maks(:,23);
t1 = maks(:, 25);
del = (maks(:, 18) + maks(:, 19)) / 2;
% Time span for the simulation
tspan = [min(t1), max(t1)];
% Initial condition
x0 = [0; 0]; % Initial values for v and r
x0 = x0 + eps;
% Solve the differential equation using ode45
[t, x] = ode23s(@(t, x) myVehicleODE(t, x, t1, del), tspan, x0);
% Plot the results
figure;
subplot(2, 1, 1);
plot(t, x(:, 1), 'b', 'LineWidth', 2);
title('Longitudinal Velocity (v)');
xlabel('Time');
ylabel('Velocity');
subplot(2, 1, 2);
plot(t, x(:, 2), 'r', 'LineWidth', 2);
title('Yaw Rate (r)');
xlabel('Time');
ylabel('Yaw Rate');
% Define the function myVehicleODE at the end of the script
function dxdt = myVehicleODE(t, x, t1, del)
% Parameters
a = 1.024;
b = 1.602;
m = 1574.02;
cr = -25488;
cf = -184780;
I = 1790;
% Interpolate the input function 'del' with respect to time 't'
del_interpolated = interp1(t1, del, t, 'linear', 'extrap');
% System matrices
a11 = (-cf - cr) / (m * x(1));
a12 = (((-cf * a) + (cr * b)) / (m * x(1))) - x(1);
a21 = ((-cf * a) + (cr * b)) / (I * x(1));
a22 = ((-cf * a^2) - (cr * b^2)) / (I * x(1));
b1 = cf / m;
b2 = (cf * a) / I;
% State-space matrices A and B
A = [a11, a12;
a21, a22];
B = [b1;
b2];
% System of differential equations
dxdt = A * x + B * del_interpolated;
end
.
  1 Comment
Sam Chak
Sam Chak on 25 Jan 2024
Hi @Zlatan,
Based on your previous 'unresolved' question, it appears that your vehicle is a linear system. However, unless I misunderstood, the symbol u is assumed to be constant. I noticed that you assigned , but at the same time, is also represented by v in the state vector. It would be helpful if you could clarify this inconsistency.
Note that if and the vehicle comes to a halt (), the system will become singular due to division by zero.
a11 = (-cf - cr) / (m * x(1));
a12 = (((-cf * a) + (cr * b)) / (m * x(1))) - x(1);
a21 = ((-cf * a) + (cr * b)) / (I * x(1));
a22 = ((-cf * a^2) - (cr * b^2)) / (I * x(1));
...
% State-space matrices A and B
A = [a11, a12;
a21, a22];
dxdt = A * x ...

Sign in to comment.

Categories

Find more on Mathematics in Help Center and File Exchange

Tags

Products


Release

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!