How to get finer data sampling?
2 views (last 30 days)
Show older comments
Songlin Yue
on 13 Dec 2023
Commented: Star Strider
on 13 Dec 2023
R0 = 0.917;
h0 = 1;
n = 8;
rk = 1;
k = 1;
d = 32/180*pi;
Lv0 = sqrt(h0.^2+2*R0.^2-2*R0.^2.*cos(d));
Ld0 = sqrt(h0.^2+2*R0.^2-2*R0.^2.*cos(d+2*pi/n));
Lv = @(h,y) sqrt(h.^2+2*R0.^2-2*R0.^2.*cos(d+y));
Ld = @(h,y) sqrt(h.^2+2*R0.^2-2*R0.^2.*cos(d+y+2*pi/n));
Uy = @(h,y) k*(1-Lv0./Lv(h,y)).*sin(y+d)+rk*k*(1-Ld0./Ld(h,y)).*sin(y+d+2*pi/n);
Uyp = fimplicit(Uy,[0 1.2 -80*pi/180 100*pi/180]);
h = Uyp.XData;
y = Uyp.YData;
The above figure is the solution lines of the implicit function Uy. Here I want to extract the XData and YData, but find that there only exist 357 samping data for x and y axis. I'm wondering is there any ways of gettting a finer sampling? For example, getting 10000 data between 0 and 1.2.
0 Comments
Accepted Answer
Star Strider
on 13 Dec 2023
Use the 'MeshDensity' name-value pair —
R0 = 0.917;
h0 = 1;
n = 8;
rk = 1;
k = 1;
d = 32/180*pi;
Lv0 = sqrt(h0.^2+2*R0.^2-2*R0.^2.*cos(d));
Ld0 = sqrt(h0.^2+2*R0.^2-2*R0.^2.*cos(d+2*pi/n));
Lv = @(h,y) sqrt(h.^2+2*R0.^2-2*R0.^2.*cos(d+y));
Ld = @(h,y) sqrt(h.^2+2*R0.^2-2*R0.^2.*cos(d+y+2*pi/n));
Uy = @(h,y) k*(1-Lv0./Lv(h,y)).*sin(y+d)+rk*k*(1-Ld0./Ld(h,y)).*sin(y+d+2*pi/n);
Uyp = fimplicit(Uy,[0 1.2 -80*pi/180 100*pi/180]);
h = Uyp.XData;
y = Uyp.YData % 359 Data Pairs
Uyp = fimplicit(Uy,[0 1.2 -80*pi/180 100*pi/180], 'MeshDensity',5E+3);
h = Uyp.XData;
y = Uyp.YData % 11845 Data Pairs
X = h(:);
Y = y(:);
XY = [X Y];
XY = rmmissing(XY);
X = XY(:,1);
Y = XY(:,2);
cidx = clusterdata(Y(:), 3);
[Ucidx,~,idx] = unique(cidx);
segments = accumarray(idx, (1:numel(idx)).', [], @(x){[X(x) Y(x)]})
figure
hold on
for k = 1:size(segments,1)
plot(segments{k}(:,1), segments{k}(:,2), 'LineWidth',3, 'DisplayName',["Line #"+k])
end
hold off
grid
legend('Location','best')
axl = axis;
figure
plot(segments{1}(:,1), segments{1}(:,2), 'LineWidth',3)
grid
title('Upper Line Only')
axis(axl)
It still works correctly with my earlier code.
.
2 Comments
More Answers (0)
See Also
Categories
Find more on Smoothing in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!



