Drawing a bode plot of the Duffing equation, which is a special application of the integro-differential equation model.

8 views (last 30 days)
I want to see the frequency responses of the Y1 signal in the modeling of this nonlinear duffing equation I prepared. I applied fft with y(:,1) but I'm not sure what to do to draw the bode diagram. Here I am having difficulty in creating the frequency vector corresponding to the response data.
% Parameters
c1 = 0.3;
k1 = 3;
k2 = 0.5;
w = 1.7; % rad/s
A = 0.5;
% Initial conditions
y0 = [0; 0]; % y1(0) = 0, y2(0) = 0
%Time span
tspan = [0, 50];
% ODE Solver
[t, y] = ode45(@duffing, tspan, y0, [], c1, k1, k2, w, A);
Y1 = fft(y(:,1)); % y1 signal Fourier transform
% Duffing equation function
function dydt = duffing(t,y,c1,k1,k2,w,A)
dydt = zeros(2,1);
dydt(1) = y(2);
dydt(2) = -c1*y(2) - k1*y(1) - k2*y(1)^3 + A*sin(w.*t);
end

Answers (1)

Star Strider
Star Strider on 10 Dec 2023
The problem with using a two-element vector for ‘tspan’ is that the MATLAB ODE integrators do not produce regularly-spaced time values with it, and the fft function requires that they must be regularly-spaced (constant sampling intervals and constant sampling frequency). To get them to be regularly-spaced, it is necessary to define them as such.
Try this —
% Parameters
c1 = 0.3;
k1 = 3;
k2 = 0.5;
w = 1.7; % rad/s
A = 0.5;
% Initial conditions
y0 = [0; 0]; % y1(0) = 0, y2(0) = 0
%Time span
% tspan = [0, 50];
Fs = 1000; % Sampling Frequency (Hz)
L = 60; % Signal Length (s)
tspan = linspace(0, L*Fs, L*Fs+1)/Fs % Time Vector
tspan = 1×60001
0 0.0010 0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080 0.0090 0.0100 0.0110 0.0120 0.0130 0.0140 0.0150 0.0160 0.0170 0.0180 0.0190 0.0200 0.0210 0.0220 0.0230 0.0240 0.0250 0.0260 0.0270 0.0280 0.0290
% ODE Solver
[t, y] = ode45(@duffing, tspan, y0, [], c1, k1, k2, w, A);
% Y1 = fft(y(:,1)); % y1 signal Fourier transform
[Y1,Fv] = FFT1(y(:,1),t);
[Y1max,idx] = max(mag2db(abs(Y1)));
Maximum_Magnitude_dB = Y1max
Maximum_Magnitude_dB = -8.1218
Peak_Frequency_Hz = Fv(idx)
Peak_Frequency_Hz = 0.2747
figure
subplot(2,1,1)
semilogx(Fv, mag2db(abs(Y1)))
ylabel('Magnitude (dB)')
grid
axis('padded')
subplot(2,1,2)
semilogx(Fv, rad2deg(unwrap(angle(Y1))))
grid
xlabel('Frequency (Hz)')
ylabel('Phase (°)')
axis('padded')
% Duffing equation function
function dydt = duffing(t,y,c1,k1,k2,w,A)
dydt = zeros(2,1);
dydt(1) = y(2);
dydt(2) = -c1*y(2) - k1*y(1) - k2*y(1)^3 + A*sin(w.*t);
end
function [FTs1,Fv] = FFT1(s,t)
s = s(:);
t = t(:);
L = numel(t);
Fs = 1/mean(diff(t));
Fn = Fs/2;
NFFT = 2^nextpow2(L);
FTs = fft((s - mean(s)).*hann(L), NFFT)/sum(hann(L));
Fv = linspace(0, 1, NFFT/2+1)*Fn;
Iv = 1:numel(Fv);
FTs1 = FTs(Iv);
end
.

Categories

Find more on Fourier Analysis and Filtering in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!