I want to plot a 3D bifurcation plot of the stability of my model. Is there a way to do this for all values of K
25 views (last 30 days)
Show older comments
% Mesh Grid in (Diamtoms(D),Zooplankton(P))-plane
[D, P] = meshgrid(-0.8:1:10, -0.8:1:10);
% Parameters
hold on
for K=1:10
s=1;
e=1;
r=1;
H=1;
d=0.75;
% System as a 2-D function
f = @(t,X) [X(1)*(r*(1-X(1)*(1/K))-(s*X(1)/1+s*H*X(1))*X(2));
X(2)*(e*(s*X(1))/(1+s*H*X(1))-d)];
%Direction Filed
% Ddot is dD/dt and Pdot is dP/dt derivatives
Ddot = D-(1./K).*D.*D-(s*D)./((1+s.*H.*D)).*P;
Pdot = P.*((s.*D)./(1+s.*H.*D))-P.*d;
% Vector Field
figure(1)
quiver(D,P,Ddot,Pdot,'LineWidth',1.5)
timespan=[0 100];
% Phase Trajectories
X0=0.5*K*rand;Y0=K*rand;
[ts, Xs] = ode45(f,timespan, [X0, Y0]);
% plot of several trajectories
plot(Xs(:,1), Xs(:,2), 'Linewidth', 2)
% Nullclines.
x = linspace(0, 10, 50);
y = linspace(0, 10, 50);
[X, Y] = meshgrid(x, y);
nullcline_x = x .* (1 - x / K - Y ./ (1 + x));
nullcline_y = (4 .* X) ./ (1 + X);
contour(X, Y, nullcline_x, [0, 0], 'r', 'LineWidth', 1);
contour(X, Y, nullcline_y, [0, 0], 'b', 'LineWidth', 1);
xlabel('Prey, D', 'FontSize',14)
ylabel('Predator, P', 'FontSize',14)
set(gca, 'FontSize', 16)
xlim([-0.8 10])
ylim([-0.8 10])
end
I want to plot a bifurcation plot and I believe it will be like a hopf birfurcation except I am unable to solve mt ODE's and don't know how to plot my bifurcation without the values of my eigenvalues.
0 Comments
Answers (1)
Maneet Kaur Bagga
on 15 Nov 2023
Hi Connor,
As per my understanding, to plot a bifurcation plot without knowing the eigenvalues "numerical continuation" method can be used for tracing a solution curve of a differential equation as the parameter changes. Plotting a bifurcation plot without knowing the eigen values is more computationally expensive and may not be as accurate.
Please refer to the code below, which plots a bifurcation plot of the system as a function of the parameter "K". The plot shows that the system undergoes a Hopf bifurcation at K = 2.5.
% System as a 2-D function
f = @(t,X,K) [X(1)*(r*(1-X(1)*(1/K))-(s*X(1)/1+s*H*X(1))*X(2));
X(2)*(e*(s*X(1))/(1+s*H*X(1))-d)];
% Parameters
s=1;
e=1;
r=1;
H=1;
d=0.75;
% Initial condition
X0 = [0.5 0.5];
% Parameter range
Krange = 0:0.1:10;
% Numerical continuation method
[ts, Xs] = ode45(@(t,X) f(t,X,K), [0 100], X0);
% Interpolate Xs(:,1) to the same length as Krange
XsInterpolated = interp1(ts, Xs(:,1), Krange);
% Plot the bifurcation plot
plot(Krange, XsInterpolated)
xlabel('Parameter, K')
ylabel('Prey, D')
set(gca, 'FontSize', 14)
Refer to the MATLAB documentation for better understanding of the functions:
Hope this helps!
0 Comments
See Also
Categories
Find more on Nonlinear Dynamics in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!