Help me plot the solution in graph

3 views (last 30 days)
Hung
Hung on 27 Sep 2023
Answered: Sam Chak on 27 Sep 2023
Consider the following system of equations: 9 − 2y − x = 0; −x + 2y = 13.
Use MATLAB to solve the above system of equations. Then, plot the solution and comment on the slope and the shape of the equations.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers (2)

Walter Roberson
Walter Roberson on 27 Sep 2023
A = randi([-9,9])
A = -8
B = randi([-9,9])
B = -4
C = randi([-9,9])
C = -5
fun1 = @(x,y) A*x + B*y + C
fun1 = function_handle with value:
@(x,y)A*x+B*y+C
A2 = randi([-9,9])
A2 = 1
B2 = randi([-9,9])
B2 = 7
C2 = randi([-9,9])
C2 = -1
fun2 = @(x,y) A2*x + B2*y + C2
fun2 = function_handle with value:
@(x,y)A2*x+B2*y+C2
fimplicit(fun1);
hold on
fimplicit(fun2);
hold off
The solution to the system is at the intersection of the two lines.

Sam Chak
Sam Chak on 27 Sep 2023
Hi @Hung,
I'll show you another two ways of plotting the line equations.
syms x y
% specify the two line equations
eqn1 = 9 - 2*y - x == 13; % equation 1
eqn2 = 2*y - x == 0; % equation 2
Method 1: Using ezplot()
yLine1 = isolate(eqn1, y)
yLine1 = 
yLine2 = isolate(eqn2, y)
yLine2 = 
figure(1)
h1 = ezplot(yLine1, [-6, 6, -5, 3]);
h1.Color = 'blue'; hold on
h2 = ezplot(yLine2, [-6, 6, -5, 3]);
h2.Color = 'red'; hold off
grid on
title('Method 1: using "ezplot"')
Method 2: Using fplot()
soly1 = solve(eqn1, y)
soly1 = 
soly2 = solve(eqn2, y)
soly2 = 
figure(2)
fplot(soly1, [-6, 6]), hold on
fplot(soly2, [-6, 6]), grid on
xlabel('x'), ylabel('y')
title('Method 2: using "fplot"')

Categories

Find more on Networks in Help Center and File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!