Can anybody help me to code boundary conditions in MATLAB for Keller Box Method?

26 views (last 30 days)
Can anybody help me to code boundary conditions in MATLAB for Keller Box Method?
f^'=1,f=S,θ^'=-r_1 [1+θ],ϕ^'=-r_2 [1+ϕ] at η=0
f^'=0,f^''=0,θ=0,ϕ=0 as η→∞
  1 Comment
vijayakumar
vijayakumar on 30 Oct 2024 at 7:31
how to set MATLAB code for velocity slip and temperature slip boundary condition for kelller box method please help me out
at eta=0, f(eta)=0, f^'(eta)=SF*f^''(eta), theta=1+ST*theta^'(eta)
at eta=infinite, f^'=0, theta=0

Sign in to comment.

Answers (2)

Mrutyunjaya Hiremath
Mrutyunjaya Hiremath on 6 Aug 2023
% Define parameters
r_1 = 0.1;
r_2 = 0.2;
S = 2.0;
% Define the differential equations
% y(1) = f, y(2) = f', y(3) = θ, y(4) = ϕ
ode_system = @(eta, y) [y(2); 1; y(3); y(4)];
% Define the boundary conditions at η = 0
initial_conditions = [S, 1, 0, 0];
% Define the boundary conditions at η → ∞
eta_infinity = 100; % Choose a large value
final_conditions = [0, 0, 0, 0];
% Solve the differential equations
[eta, result] = ode45(ode_system, [0, eta_infinity], initial_conditions);
% Extract the solutions
f = result(:, 1);
f_prime = result(:, 2);
theta = result(:, 3);
phi = result(:, 4);
% Plot the solutions
subplot(2, 2, 1);
plot(eta, f);
xlabel('η');
ylabel('f');
title('f vs. η');
subplot(2, 2, 2);
plot(eta, f_prime);
xlabel('η');
ylabel("f'");
title("f' vs. η");
subplot(2, 2, 3);
plot(eta, theta);
xlabel('η');
ylabel('θ');
title('θ vs. η');
subplot(2, 2, 4);
plot(eta, phi);
xlabel('η');
ylabel('ϕ');
title('ϕ vs. η');
  7 Comments
Torsten
Torsten on 7 Aug 2023
It should be clear that we won't program this for you.
If you have a boundary value problem as above, you can use the MATLAB tools "bvp4c" or "bvp5c".
If your problem is an assignment, you will have to start programming it in MATLAB or make a google search whether you find a MATLAB code that fits your needs.

Sign in to comment.


Santosh Devi
Santosh Devi on 27 Feb 2024
f^''' (η)+ff^'' (η)-(f^' (η))^2+Mf^' (η)-λf(η)=0
■θ^'' (η)+Pr⁡[f(η)θ^' (η)-b/(u_w^2 ) ηθ(η)+Ec(f^'' (η))^2+Q_0 θ(η)]=0
■ϕ^'' (η)+Sc[f(η) ϕ^' (η)-Kϕ(η)]=0
■f(0)=s,f^' (0)=1,θ(0)=1,ϕ(0)=1
■f^' (∞)→0,θ(∞)→0,ϕ(∞)→0
  5 Comments
Thiripura Sundari
Thiripura Sundari on 22 Oct 2024
Good afternoon Professor, can please give fourth order jeffrey fluid using keller box method

Sign in to comment.

Categories

Find more on Fluid Dynamics in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!