Clear Filters
Clear Filters

How can I apply 'for' cycle for two arrays?

1 view (last 30 days)
Hello,
I have these parameters:
D=0.030;
A=7.0685*10^-4;
Jo=0.763;
Jw=[0.778090833 0.998156927 1.194644511 1.395061847 1.583689928 1.772318008 1.964875841 2.369640264];
ro_o=910;
ro_w=1000;
mu_w=0.001;
mu_o=[1.057 1.079 1.057 1.117 1.086 1.050 1.057 0.993];
and the function as:
Hw = fsolve(@(Hw) (((8*ro_o*((D-(2*sqrt(Hw*A/pi)))*(Jo/(1-Hw))*ro_o/mu_o)^-1.0)*(((Jo/(1-Hw))-(Jw/Hw))*((Jo/(1-Hw))-(Jw/Hw))))*(pi*(D-(2*sqrt(Hw*A./pi)))*(1/(1-Hw))))-((0.023*(((Jw*D*ro_w)/mu_w)^-.2)*ro_w*(Jw/Hw)^2*(pi*D))), 0.9)
For each value of Jw and mu_o, there must be one value of Hw, how can I write 'for' loop to take into consideration of two vectors Jw and mu_o?

Accepted Answer

Roger Stafford
Roger Stafford on 10 Apr 2015
Edited: Roger Stafford on 10 Apr 2015
It depends on what you mean by "For each value of Jw and mu_o". If you mean for each of eight corresponding pairs of numbers from these two vectors, do this:
for k = 1:8
Hw(k) = fsolve(@(Hw) .....mu_o(k).....Jw(k).....
end
If you mean for each of the sixty-four possible combination of pairs from these two arrays, then do:
for k1 = 1:8
for k2 = 1:8
Hw(k1,k2) = fsolve(@(Hw) .....mu_o(k1).....Jw(k2).....
end
end
Let us hope that the initial estimate of 0.9 will lead to successful convergence for all cases.
There is also the possible problem of multiple solutions for this equation.

More Answers (0)

Categories

Find more on Programming in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!