how to plot in matlab a formula with multiple summation ?
4 views (last 30 days)
Show older comments
i have the following Spectral efficiency in line of sight (SE_NLOS) formula :
i have K angles Q0 random value between (0;2Pi) we'll refer to them as Q in my code ,and K random angles Q1 random in value between (0;2PI) we'll refer to them as W in my code,
in the first G(.,.) , G1( Q(k), Q(i) ) where i and k are the i_th and k_th Q angles
and the second G(.,.), G2( Q(k), W(i) ) where i is the i_th angle of W, and k is the k_th Q angles
due do the random nature of generating the random angles Q and W, i calculate the mean of G over many realizations for accuracy
beta_bar and SNR0 are given in dB we convert them to linear scale (and to avoid any errors in the case of 1/SNR0)
the plotted results should be similar to that present in the figure below
i only attempted to simulate SE_LOS for M=100 so it's the upper most black line that we need to pay attention to
(i'am yet to attemp recreating the code for the NLOS case (blue line) but considering my evident incompetence when it comes to loops and summations it won't be long before i post a question about it)
my best attempt code is below:
% parameters
dH = 0.5;
M = 100;
K_UE = 1:20;
SNR0_dB = 0;
SNR0 = 10^(0/10);
beta_bar_dB = -10;
beta_bar = 10^(-10/10);
num_realizations = 1000;
% Compute SE_LOS for each value of K
% SE_LOS = zeros(length(K));
% SE_LOS=0;
SE_LOS = 0;
G1_sum = 0;
G2_sum = 0;
TOT_SUM = 0;
for kk = 1:numel(K_UE)
K = K_UE(kk);
for k = 1:K % for the innitial sum k to K
G1 = zeros(1, num_realizations);
G2 = zeros(1, num_realizations);
for i = 1:K % for the G sums i to K per each k
for j = 1:num_realizations % we calculate the mean of multiple realizations of G1 & G2 for more accuracy
Q = 2*180*rand(1:K); % Q angles of each intra_cell UE
W = 2*180*rand(1:K); % W angles of each inter_cell UE
if sind(Q(k)) ~= sind(W(i))
G2(j) = (sind(180*dH*M*(sind(Q(k))-sind(W(i)))))^2/ ...
(M*(sind(180*dH*(sind(Q(k))-sind(W(i)))))^2);
else
G2(j) = M;
end
if i ~= k
G1(j) = (sind(pi*dH*M*(sind(Q(k))-sind(Q(i)))))^2/ ...
(M*(sind(pi*dH*(sind(Q(k))-sind(Q(i)))))^2);
else
G1(j) = 0;
end
end
G2_sum = G2_sum + mean(G2);
G1_sum = G1_sum + mean(G1);
end
TOT_SUM = TOT_SUM + mean( log2(1 + M ./ (G1_sum + beta_bar * G2_sum + 1./SNR0)) );
G2_sum = 0;
G1_sum = 0;
end
SE_LOS(kk) = TOT_SUM
TOT_SUM=0;
end
% Plot SE_LOS as function of K_UE
plot(K_UE, SE_LOS);
xlabel('Number of UEs (K)');
ylabel('Sum SE (bits/s/Hz)');
when it comes to matlab summations and loops continue to be the bane of my existence when it comes to matlab
of coure all assistance is greatly appreciated!
3 Comments
VBBV
on 20 May 2023
May be you can do something like this
% parameters
dH = 0.5;
M = 100;
K_UE = 1:20;
SNR0_dB = 0;
SNR0 = 10^(0/10);
beta_bar_dB = -10;
beta_bar = 10^(-10/10);
num_realizations = 100;
% Compute SE_LOS for each value of K
% SE_LOS = zeros(length(K));
% SE_LOS=0;
SE_LOS = 0;
G1_sum = 0;
G2_sum = 0;
TOT_SUM = 0;
for kk = 1:numel(K_UE)
K = K_UE(kk);
for k = 1:K % for the innitial sum k to K
G1 = zeros(1, num_realizations);
G2 = zeros(1, num_realizations);
Q1 = 2*180*rand(K,1); %
for i = 1:K % for the G sums i to K per each k
Q2 = 2*180*rand(K,1); %
Q = 2*180*rand(K,1);
W = 2*180*rand(K,1); % W angles of each inter_cell UE
for j = 1:num_realizations % we calculate the mean of multiple realizations of G1 & G2 for more accuracy
if sind(Q(k)) ~= sind(W(i))
G2(j) = (sind(180*dH*M*(sind(Q(k))-sind(W(i)))))^2/ ...
(M*(sind(180*dH*(sind(Q(k))-sind(W(i)))))^2);
else
G2(j) = M;
end
if i~=k
G1(j) = (sind(180*dH*M*(sind(Q1(k))-sind(Q2(i)))))^2/ ...
(M*(sind(180*dH*(sind(Q1(k))-sind(Q2(i)))))^2);
else
G1(j) = 0;
end
end
G2_sum = G2_sum + mean(G2);
G1_sum = G1_sum + mean(G1);
end
TOT_SUM = TOT_SUM + ( log2(1 + M ./ (G1_sum + beta_bar * G2_sum + (1./SNR0))) );
G2_sum = 0;
G1_sum = 0;
end
SE_LOS(kk) = TOT_SUM;
TOT_SUM=0;
end
G1, G2
% Plot SE_LOS as function of K_UE
plot(K_UE, SE_LOS);
grid
xlabel('Number of UEs (K)');
ylabel('Sum SE (bits/s/Hz)');
Answers (1)
VBBV
on 20 May 2023
% parameters
dH = 0.5;
M = 100;
K_UE = 1:20;
SNR0_dB = 0;
SNR0 = 10^(0/10);
beta_bar_dB = -10;
beta_bar = 10^(-10/10);
num_realizations = 100;
% Compute SE_LOS for each value of K
% SE_LOS = zeros(length(K));
% SE_LOS=0;
SE_LOS = 0;
G1_sum = 0;
G2_sum = 0;
TOT_SUM = 0;
for kk = 1:numel(K_UE)
K = K_UE(kk);
for k = 1:K % for the innitial sum k to K
G1 = zeros(1, num_realizations);
G2 = zeros(1, num_realizations);
for i = 1:K % for the G sums i to K per each k
for j = 1:num_realizations % we calculate the mean of multiple realizations of G1 & G2 for more accuracy
Q = 2*180*rand(K,1); % Q angles of each intra_cell UE
W = 2*180*rand(K,1); % W angles of each inter_cell UE
if sind(Q(k)) ~= sind(W(i))
G2(j) = (sind(180*dH*M*(sind(Q(k))-sind(W(i)))))^2/ ...
(M*(sind(180*dH*(sind(Q(k))-sind(W(i)))))^2);
else
G2(j) = M;
end
%
% if i ~= k
% G1(j) = (sind(pi*dH*M*(sind(Q(k))-sind(Q(i)))))^2/ ...
% (M*(sind(pi*dH*(sind(Q(k))-sind(Q(i)))))^2);
% else
% G1(j) = 0;
% end
end
G2_sum = G2_sum + mean(G2);
G1_sum = G1_sum + mean(G1);
end
TOT_SUM = TOT_SUM + ( log2(1 + M ./ (G1_sum + beta_bar * G2_sum + (1./SNR0))) );
G2_sum = 0;
G1_sum = 0;
end
SE_LOS(kk) = TOT_SUM;
TOT_SUM=0;
end
% Plot SE_LOS as function of K_UE
plot(K_UE, SE_LOS);
grid
xlabel('Number of UEs (K)');
ylabel('Sum SE (bits/s/Hz)');
2 Comments
VBBV
on 20 May 2023
% if i ~= k
% G1(j) = (sind(pi*dH*M*(sind(Q(k))-sind(Q(i)))))^2/ ...
% (M*(sind(pi*dH*(sind(Q(k))-sind(Q(i)))))^2);
% else
% G1(j) = 0;
% end
The above code may be superfluous , otherwise code looks ok except for these lines below
Q = 2*180*rand(1:K); % Q angles of each intra_cell UE
W = 2*180*rand(1:K);
K is a scalar, when you use it as 1:K it becomes a vector which is interpreted incorrectly by rand function. Change it to
Q = 2*180*rand(K,1); % Q angles of each intra_cell UE
W = 2*180*rand(K,1);
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!