Clear Filters
Clear Filters

Hi, I'm trying to make a boundry that reflects the integrin to the opposite side of where the boundary touches, for instance it hits the top and ends up on the bottom.

1 view (last 30 days)
N=10; % number of integrins
L=100; % size of the domain 100nm
D=.01; % diffusion coefficient
dt=1; % time step
F=randi([1, 10],1); % force on the bond with a random number of 1 to 10
P_a=randi([0,1],1); % binding rate of a random number from 0 to 1
P_ub=1/(1.5*F); % unbinding rate based upon our previous values
Tmax=500; % max time
% Intialize our integrins
x=randi([0,360],N,1); % x-coordinates generated randomily for each integrin
y=randi([0,50],N,1); % y-coordinates generated for each
state=ones(N,1); % Each integrin is set to an inactive state at 0
% our figure
figure;
axis([0 L 0 L]);
set(gca,'nextplot','replacechildren');
% position update
for t = 0:dt:Tmax
for i=1:N
w=randi([0,1],1);
if state(i)==1
dx=randi([-360,360],1);
dy=randi([-50,50],1);
x(i)=x(i)+dx;
y(i)=y(i)+dy;
end
end
for i=1:N
w=randi([0,1],1);
if w < P_a && state(i)==1
state(i)=2;
colors(i,:)=[0 1 0]; % Turn it to green
end
end
for i=1:N
w1=randi([0,1],1);
if state(i)==2 && w1<P_ub
state(i)=1;
end
end
% colors for our integrin states
colors = repmat([1 0 0], N,1); % red for inactive state
colors(state == 1,:,:) = repmat([0 1 0],sum(state == 1),1);
% plotting our integrins
scatter(x,y,100,colors,'filled');
title(sprintf('Time=%.2f',t));
drawnow;
colors(i,:)=[0 0 1]; % Turn it back to red
colors(i,:)=[0 1 0]; % Turn it to green
end

Answers (1)

Vandit
Vandit on 31 May 2023
Hi,
The main modification is to reflect the integrins that hit the boundary. To do this, I added a nested for loop right after the initial for loop that updates the position of the integrins. In the new loop, I checked if the x or y coordinate of an integrin has gone out of bounds (less than 0 or greater than L), and if so, I reflected its position to the opposite side of the boundary.
Also the code you provided has some errors that need to be corrected. Kindly find the corrected code along with the modifications to reflect the integrins at the boundary given below:
N = 10; % number of integrins
L = 100; % size of the domain in nm
D = 0.01; % diffusion coefficient in nm^2/s
dt = 1; % time step in s
F = randi([1, 10], 1); % force on the bond with a random number of 1 to 10 pN
P_a = rand(1); % binding rate of a random number from 0 to 1
P_ub = 1 / (1.5 * F); % unbinding rate based on our previous values
Tmax = 500; % max time
% Initialize our integrins
x = randi([0, 360], N, 1); % initial x-coordinates randomly distributed
y = randi([0, 50], N, 1); % initial y-coordinates randomly distributed
state = ones(N, 1); % Each integrin is set to an inactive state at 0
colors = repmat([1 0 0], N, 1); % red for inactive state
colors(state == 1, :, :) = repmat([0 1 0], sum(state == 1), 1); % green for active state
% Create the figure
figure;
axis([0 L 0 L]);
set(gca, 'nextplot', 'replacechildren');
% Main time loop
for t = 0:dt:Tmax
% Update the positions of the integrins
for i = 1:N
if state(i) == 1
dx = sqrt(2 * D * dt) * randn(1); % Random displacement in x
dy = sqrt(2 * D * dt) * randn(1); % Random displacement in y
x(i) = x(i) + dx; % Update x-coordinate
y(i) = y(i) + dy; % Update y-coordinate
end
end
% Reflect integrins at the boundary
for i = 1:N
if x(i) < 0
x(i) = -x(i);
elseif x(i) > L
x(i) = 2 * L - x(i);
end
if y(i) < 0
y(i) = -y(i);
elseif y(i) > L
y(i) = 2 * L - y(i);
end
end
% Update integrin states
for i = 1:N
if state(i) == 1
if rand(1) < P_a % Probability of activation
state(i) = 2; % Turn integrin active
colors(i, :, :) = repmat([0 1 0], 1, 1, 3); % Update color to green
end
elseif rand(1) < P_ub % Probability of unbinding
state(i) = 1; % Return integrin to inactive state
colors(i, :, :) = repmat([1 0 0], 1, 1, 3); % Update color to red
end
end
% Plot the integrins
scatter(x, y, 100, colors, 'filled');
title(sprintf('Time: %.2f s', t));
drawnow;
end
Hope this helps.
Thankyou

Categories

Find more on Startup and Shutdown in Help Center and File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!